• Title/Summary/Keyword: mooring basin

Search Result 35, Processing Time 0.02 seconds

Study on Model Test Technique of Deepwater Moorings: A Hybrid Modeling of A OTEC Mooring System (심해계류 모형시험 기법 연구: OTEC 계류시스템의 혼합형 모델링)

  • Hong, Sup;Kim, Jin-Ha;Hong, Seok-Won;Hong, Sa-Young;Jalihal, Purnima
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.97-102
    • /
    • 2001
  • This paper describes an investigation how to carry out model tests of deepwater moorings exceeding the basin depth range. A hybrid mooring model, a combination of mooring lines scaled model and a couple of linear springs, is taken into account as an equivalent substitute of a full depth mooring system. Such an idea is applied to the model test of an OTEC mooring system to be installed in 1000m deep ocean. A 1/25 scaled model test of surface vessel and the upper part of mooring system is performed at ocean engineering basin. Possibility and limitation of the hybrid mooring modeling is discussed.

  • PDF

Study on Design of Truncated Mooring Line with Static Similarity in Model Test Basins (모형수조에서 정적 상사성을 지닌 절단계류선 모델링에 관한 연구)

  • Kim, Yun-Ho;Kim, Byoung-Wan;Cho, Seok-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.257-265
    • /
    • 2017
  • In this study, a series of numerical simulations was conducted in order to design a truncated mooring line with a static similarity to the prototype. A finite element method based on minimizing the potential energy was utilized to describe the dynamics of mooring lines. The prototype mooring lines considered were installed at a water depth of 1,000 m, whereas the KRISO ocean engineering basin (OEB) in Daejeon has a water depth of 3.2 m, which represents 192 m using a scaling of 1:60. First, an investigation for the design of the truncated mooring line was carried out to match the static characteristics of the KRISO Daejeon OEB environment. Then, the same procedure was performed with the KRISO new deepwater ocean engineering basin (DOEB) that is under construction in Busan. This new facility has a water depth of 15 m, which reflects a real scale depth of 900 m considering the 1:60 scaling factor. A finite element method was used to model the mooring line dynamics. It was found that the targeted truncated mooring line could not be designed under the circumstances of the KRISO OEB with any material properties, whereas several mooring lines were easily matched to the prototype under the circumstances of the KRISO DOEB.

Design of Truncated Mooring Line Model in KRISO's Deepwater Ocean Engineering Basin

  • Jung, Hyun-Woo;Kim, Yun-Ho;Cho, Seok-Kyu;Hwang, Sung-Chul;Sung, Hong-Gun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.227-238
    • /
    • 2015
  • The present work was an attempt to investigate the applicability of truncated mooring systems to KRISO's deep ocean engineering basin (DOEB) with ratios of 1:100, 1:60, and 1:50. The depth of the DOEB is 15 m. Therefore, the corresponding truncated depths for this study were equal to 1500 m, 900 m, and 750 m. The investigation focused on both the static and dynamic characteristics of the mooring system. It was shown, in a static pull-out test, that the restoring force of a FPSO vessel could be modified to a good level of agreement for all three truncation cases. However, when the radius of the mooring site was reduced according to the truncation factor, the surge motion response during a free-decay test showed a significant difference from the full-depth model. However, the reduction of this discrepancy was achieved by increasing the radius up to its maximum possible value while considering the size of the DOEB. Especially, in terms of the time period, the difference was reduced from 24.0 to 5.3 s for a truncation ratio of 1:100, 54.1 to 8.6 s for a truncation ratio of 1:60, and 31.7 to 3.9 s for a truncation ratio of 1:50. As a result, the study verified the applicability of the truncated mooring system to the DOEB, and therefore it could represent the full-depth mooring system relatively well in terms of the static and dynamic conditions.

Development of quasi-static analysis program for catenary mooring system using OpenFOAM (OpenFOAM을 이용한 catenary 계류시스템의 준정적 해석 프로그램 개발)

  • Choi, Jun Hyeok;Lee, Seung Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.274-280
    • /
    • 2017
  • Generally, global performance analysis in offshore platforms is performed using potential-based numerical tools, which neglect hydrodynamic viscous effects. In comparison with the potential theory, computational fluid dynamics (CFD) methods can take into account the viscous effects by solving the Navier-Stokes equation using the finite-volume method. The open-source field operation and manipulation (OpenFOAM) C++ libraries are employed for a finite volume method (FVM) numerical analysis. In this study, in order to apply CFD to the global performance analysis of a hull-mooring coupled system, we developed a numerical wave basin to analyze the global performance problem of a floating body with a catenary mooring system under regular wave conditions. The mooring system was modeled using a catenary equation and solved in a quasi-static condition, which excluded the dynamics of the mooring lines such as the inertia and drag effects. To demonstrate the capability of the numerical basin, the global performance of a barge with four mooring lines was simulated under regular wave conditions. The simulation results were compared to the analysis results from a commercial mooring analysis program, Orcaflex. The comparison included the motion of the barge, catenary shape, and tension in the mooring lines. The study found good agreement between the results from the developed CFD-based numerical calculation and commercial software.

An experimental study on compliant buoy mooring system in shallow water (천해역 유연부이 계류시스템에 관한 실험연구)

  • Kim, Jin-Ha;Hong, Sa-Young;Hong, Seok-Won;Hong, Sup
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.155-160
    • /
    • 2002
  • In this paper, a compliant buoy mooring system of a floating cylindrical structure in shallow water depth is studied experimentally. The compliant buoy mooring system consists of four buoys, vertical mooring legs and horizontal mooring lines. A series of model test were carried out at KRISO ocean engineering basin for various mooring parameters; line length, pretension of mooring leg and mooring layouts and environmental conditions; regular and irregular waves combined with current and wind. The mooring line tensions and 6-DOF motions of the floating structure were measured using water-proof load cells and 3 CCD camera system. The results of a series of model tests were discussed on nonlinear motion behaviors of the floating structure and characterisitics of cumulative distributions of mooring line peak tensions.

  • PDF

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.

Mooring Layout Angle and Maximum Tension for Spread Moored FPSOs in Various Metocean Conditions (다점계류식 FPSO의 해양환경별 계류선 각도와 최대 장력에 대한 연구)

  • Park, Sung-Boo;Lee, Seung-Jae;Chung, Yun-Suk;Lee, Min-Kyeong;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.253-259
    • /
    • 2016
  • This study demonstrates the result of mooring analysis for five spread-moored FPSOs having different length-to-breadth (L/B) ratios from 4.5–6.5. FPSOs are subjected to four metocean conditions, ones from the Gulf of Mexico (Hurricane/Loop current condition), West Africa, Nigeria, and Brazil Campos Basin, which are amongst the most typical offshore oil and gas fields. With change in design parameters of OBA (Outer bundle angle) and IBA (Inner bundle angle) combinations, a change in the line tension is demonstrated and the OBA-IBA combinations having the smallest line tension are presented for each L/B ratio and sea, respectively. This study is expected to influence the preliminary design layout of an FPSO spread-mooring system as a function of the L/B ratio and metocean conditions.

Experimental Study of Effect of Mooring Line Failure on Behavior of Turret-moored FPSO Ship (터렛 계류된 FPSO의 운동응답 및 계류선 손상 시 거동 특성에 대한 실험적 연구)

  • Hong, Jang-Pyo;Cho, Seok-Kyu;Seo, Jang-Hoon;Sung, Hong-Gun;Lee, Dong Yeop;Park, In Bo;Won, Young Uk;Choi, Sung Kwon;Kim, Dae-woong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.231-240
    • /
    • 2015
  • FPSO model tests of mooring line failure were carried out in the ocean basin at KRISO. The characteristics of the motions and mooring lines were investigated. The FPSO ship was moored using an internal turret and catenary mooring. The test model was 1/60 scale. The mooring lines were designed to satisfy the characteristics of the original mooring lines using the truncation method. The experiments were conducted under various environments: a safe wave, current and wind condition; single broken mooring line condition; and transient mode condition. The moment of the break was determined based on experimental test results. The results showed that the FPSO behavior and mooring line tensions were acceptable under the failure condition.

Experimental Study on a Dolphin-Fender Mooring System for Pontoon-Type Structure (초대형 부유식 구조물의 돌핀-펜더계류시스템에 관한 실험연구)

  • Kim, Jin-Ha;Cho, Seok-Kyu;Hong, Sa-Young;Kim, Young-Shik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.43-49
    • /
    • 2005
  • in this paper a dolphin-fender moored pontoon-type floating structure in shallow water depth is studied focusing on mooring force. The pontoon-type floating structure is 500m long, 300m wide. The structure has partially non-uniform drafts of 2.0m and 3.0m. The employed mooring system is a guyed frame type dolphin-fender system. The 1/125 scale model fender system is made of rubber tube to have hi-linear load deflection characteristics. A series of model tests has been conducted focusing on motion and fender force responses in regular and irregular waves at KRISO's ocean engineering basin Non-linear numerical simulation of fender reaction force has been carried out and the results are compared with those of model tests. The simulated rigid body motion and mooring forces also have been compared with the test results.

Development of Underwater Motion Measurement System for Model Test of Ocean System (해양시스템 모형실험을 위한 수중운동계측시스템 개발 연구)

  • CHOI JONG-SU;HONG SUP
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.166-172
    • /
    • 2004
  • An underwater motion measurement system was constructed for applications to the model basin. A commercial motion capture system, FALCON of Motion Analysis Corp., which corrects automatically the distortion caused by refraction of the light passing through water and air, was adopted for underwater motion measurement. The modifications of FALCON system were performed: waterproofing camera housings, markers, connectors, and a new blue ring lighter. the accuracy of the motion measurement was obtained within the calibration error of 0.87mm in average and 0.89mm in standard deviation for the distance of 500mm between two markers on the calibration device. the volume of $2100mm(length)\times2100mm(breadth)\times2300mm(Height)$ was covered with 4 cameras of the underwater motion measurement system. For the performance verification, motion measurement test of a vertical mooring chain model excited at the top end was carried out. The 3D motions of mooring model were measured with variable amplitude and period of the forced excitation. Higher order motions of the mooring model were observed as the excitation period decreases. the performance of the system was verified by successfully measuring 3D motion of mooring model.

  • PDF