• Title/Summary/Keyword: monthly rainfall

Search Result 307, Processing Time 0.03 seconds

Seasonal Changes of Tidal-flat Sediments: Kwangyang Bay, South Coast of Korea (조간대 퇴적물의 계절적 변화 : 한국 남해안의 광양만)

  • 류상옥;김주용;이희준;조영길;안성모
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.349-356
    • /
    • 2003
  • A continuous monitoring of sedimentation rate and textural characteristics of surface sediments was carried out on the tidal flats in Kwangyang Bay, middle South Sea for two years on an every-two-monthly basis. This study shows that during the winter the tidal flats receive a thin surface layer of which texture becomes finer. In summer, the surface sediments were subject to rather abrupt erosion by occational typhoons and heavy rainfall resulting in a coarse-silt dominated texture. Due to nearly closed geomorphology of Kwangyang Bay, local waves created in the bay during winter are much subdued, in contrast to the rough wave climate and associated sedimentary cycle for open-type tidal flats in the Yellow Sea. In addition, unexpected artificial effects on the tidal-flat sedimentation by construction of a huge industrial complex along the shoreline of the bay are observed from a nearby tidal flat. Here, the sediments were consistently eroded without any sign of natural seasonal variations.

Development of the evaluation method for hydrological cycle soundness: application to Gyeongan stream watershed (수문 순환 건전성 평가 기법 개발 : 경안천 유역 적용)

  • Kim, Geon;Lee, Jae-Beom;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.891-901
    • /
    • 2021
  • In this study, a hydrological cycle soundness evaluation method was developed using monthly meteorological observation data. The Gyeongan stream watershed was divided into five sub-basins and eight criteria were established for hydrological cycle evaluation: the number of non-rainfall day, the number of non-rainfall day fluctuation, over 30 mm per day, over 30 mm per day fluctuation, average river level, average river level fluctuation, average groundwater level and average groundwater level fluctuation. Observation data were normalized and weights for evaluation by each sub-basin were calculated using the entropy method. The hydrological cycle soundness evaluation indices were calculated using TOPSIS applying the calculated weight value. As a result of the study, it was found that the hydrological cycle soundness was unstable in the Gyeongan-upstream from November to January, the Gyeongan-suwipyo from February to April, Gonjiam stream from April to May, and the Gyeongan-downstream from November to February. In this study, the developed technique is expected to serve as a quantitative basis for policy decision to recover hydrological cycle soundness.

Spatio-temporal potential future drought prediction using machine learning for time series data forecast in Abomey-calavi (South of Benin)

  • Agossou, Amos;Kim, Do Yeon;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.268-268
    • /
    • 2021
  • Groundwater resource is mostly used in Abomey-calavi (southern region of Benin) as main source of water for domestic, industrial, and agricultural activities. Groundwater intake across the region is not perfectly controlled by a network due to the presence of many private boreholes and traditional wells used by the population. After some decades, this important resource is becoming more and more vulnerable and needs more attention. For a better groundwater management in the region of Abomey-calavi, the present study attempts to predict a future probable groundwater drought using Recurrent Neural Network (RNN) for future groundwater level prediction. The RNN model was created in python using jupyter library. Six years monthly groundwater level data was used for the model calibration, two years data for the model test and the model was finaly used to predict two years future groundwater level (years 2020 and 2021). GRI was calculated for 9 wells across the area from 2012 to 2021. The GRI value in dry season (by the end of March) showed groundwater drought for the first time during the study period in 2014 as severe and moderate; from 2015 to 2021 it shows only moderate drought. The rainy season in years 2020 and 2021 is relatively wet and near normal. GRI showed no drought in rainy season during the study period but an important diminution of groundwater level between 2012 and 2021. The Pearson's correlation coefficient calculated between GRI and rainfall from 2005 to 2020 (using only three wells with times series long period data) proved that the groundwater drought mostly observed in dry season is not mainly caused by rainfall scarcity (correlation values between -0.113 and -0.083), but this could be the consequence of an overexploitation of the resource which caused the important spatial and temporal diminution observed from 2012 to 2021.

  • PDF

Time-series Changes in Particle Size Characteristics of Suspended Sediment at the Seungchon and the Juksan Weir in the Yeongsan River (영산강 부유하중의 시계열적 입도 특성 변화: 승촌보, 죽산보를 중심으로)

  • Lim, Young Shin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.1-20
    • /
    • 2019
  • In order to establish appropriate policy to control sediment-associated problems, it is necessary to identify the physical characteristics of the reservoir sediments in particulate form in the Yeongsan River. Two time-integrated suspended sediment samplers were installed at Seungchon and Juksan weir on the upper and middle Yeongsan River in July 2012. Reservoir sediment samples were obtained at monthly intervals until October 2014. During the monitoring period, a total of 38 sediment samples were obtained and analyzed. Seasonal trends of suspended sedimentation rates and grain size distributions were examined based on variations in precipitation and discharge fluctuations. Moreover, stream flow characteristics, which has a great influence on the physical characteristics of the river sediment, was analyzed using flow duration curve for the period 2003-2019 at Naju gauging station. Sedimentation rates during summer, when heavy rainfall was concentrated due to the monsoonal front and typhoon, were very high, indicating the positive relationship between sediment concentration and discharge. Particle size analysis of the collected sediment showed that coarse silt and very fine sand-sized sediment dominated most of the Seungchon weir sediment. On the other hand, medium silt-sized sediment dominated the downstream Juksan weir except for a few summer samples. These results implied that the physical characteristics of the suspended sediment are determined not only due to flow fluctuations, but also with regard to the antecedent rainfall conditions, hillslope-channel connectivity, and the supply of materials from various contributing regions. This information about flow characteristics and temporal variations in reservoir sediment can be used for safe management of the weir and discussing the issues on the dismantling of the weirs.

Influence of Climate Factors and PM10 on Rotaviral Infection: A Seasonal Variation Study (Rotavirus 감염의 연도별 유행시기의 변동양상 및 기후요소와 PM10과의 관계)

  • Im, Hae-Ra;Jeon, In-Sang;Tchah, Hann;Im, Jeong-Soo;Ryoo, Eell;Sun, Yong-Han;Cho, Kang-Ho;Im, Ho-Joon;Lee, Gwang-Hoon;Lee, Hak-Soo;Kang, Yune-Jeung;Noh, Yi-Gn
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.6 no.2
    • /
    • pp.120-128
    • /
    • 2003
  • Purpose: Recently, while the authors were experiencing that the epidemic period of rotaviral infection happened more in the early spring, we tried to find out how the outbreaks of rotaviral infection are changing in detail depending on the weather condition since it has something to do with the climate factors and PM10. Methods: Fourteen hundreds seventy nine patients who were proved to be positive to rotavirus were chosen among children less than 5 years old from January 1995 to June 2003. Among various climate factors, monthly average temperature, humidity, rainfall and PM10 were selected. Results: Rotaviral infection was most active in 2002 as 309 (20.9%) patients. It has been the spring that is the most active period of rotaviral infection since 2000. The temperature (RR=0.9423, CI=0.933424~0.951163), rainfall (RR=1.0024, CI=1.001523~1.003228) and PM10 (RR=1.0123, CI=1.009385~1.015248) were significantly associated with the monthly distribution of rotaviral infection. Conclusion: Through this study we determined that the epidemic period of rotaviral infection is changed to spring, which is different from the usual seasonal periods such as late fall or winter as reported in previous articles. As increased PM10 which could give serious influence to the human body, and changing pattern of climate factors such as monthly average temperature and rainfall have something to do with the rotaviral infection, we suppose that further study concerning this result is required in the aspects of epidemiology, biology and atmospheric science.

  • PDF

An Impact Assessment of Climate and Landuse Change on Water Resources in the Han River (기후변화와 토지피복변화를 고려한 한강 유역의 수자원 영향 평가)

  • Kim, Byung-Sik;Kim, Soo-Jun;Kim, Hung-Soo;Jun, Hwan-Don
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.309-323
    • /
    • 2010
  • As climate changes and abnormal climates have drawn research interest recently, many countries utilize the GCM, which is based on SRES suggested by IPCC, to obtain more accurate forecast for future climate changes. Especially, many research attempts have been made to simulate localized geographical characteristics by using RCM with the high resolution data globally. To evaluate the impacts of climate and landuse change on water resources in the Han-river basin, we carried out the procedure consisting of the CA-Markov Chain, the Multi-Regression equation using two independent variables of temperature and rainfall, the downscaling technique based on the RegCM3 RCM, and SLURP. From the CA-Markov Chain, the future landuse change is forecasted and the future NDVI is predicted by the Multi-Regression equation. Also, RegCM3 RCM 50 sets were generated by the downscaling technique based on the RegCM3 RCM provided by KMA. With them, 90 year runoff scenarios whose period is from 2001 to 2090 are simulated for the Han-river basin by SLURP. Finally, the 90-year simulated monthly runoffs are compared with the historical monthly runoffs for each dam in the basin. At Paldang dam, the runoffs in September show higher increase than the ones in August which is due to the change of rainfall pattern in future. Additionally, after exploring the impact of the climate change on the structure of water circulation, we find that water management will become more difficult by the changes in the water circulation factors such as precipitation, evaporation, transpiration, and runoff in the Han-river basin.

Development of Spatial Statistical Downscaling Method for KMA-RCM by Using GIS (GIS를 활용한 KMA-RCM의 규모 상세화 기법 개발 및 검증)

  • Baek, Gyoung-Hye;Lee, Moun-Gjin;Kang, Byung-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.136-149
    • /
    • 2011
  • The aim of this study is to develop future climate scenario by downscaling the regional climate model (RCM) from global climate model (GCM) based on IPCC A1B scenario. To this end, the study first resampled the KMA-RCM(Korea meteorological administration-regional climate model) from spatial resolution of 27km to 1km. Second, observed climatic data of temperature and rainfall through 1971-2000 were processed to reflect the temperature lapse rate with respect to the altitude of each meteorological observation station. To optimize the downscaled results, Co-kriging was used to calculate temperature lapse-rate; and IDW was used to calculate rainfall lapse rate. Fourth, to verify results of the study we performed correlation analysis between future climate change projection data and observation data through the years 2001-2010. In this study the past climate data (1971-2000), future climate change scenarios(A1B), KMA-RCM(Korea meteorological administration-regional climate model) results and the 1km DEM were used. The research area is entire South Korea and the study period is from 1971 to 2100. Monthly mean temperatures and rainfall with spatial resolution of 1km * 1km were produced as a result of research. Annual average temperature and precipitation had increased by $1.39^{\circ}C$ and 271.23mm during 1971 to 2100. The development of downscaling method using GIS and verification with observed data could reduce the uncertainty of future climate change projection.

Evaluation of SATEEC Daily R Module using Daily Rainfall (일강우를 고려한 SATEEC R 모듈 적용성 평가)

  • Woo, Wonhee;Moon, Jongpil;Kim, Nam Won;Choi, Jaewan;Kim, Ki-sung;Park, Youn Shik;Jang, Won Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.841-849
    • /
    • 2010
  • Soil erosion is an natural phenomenon. However accelerated soil erosion has caused many environmental problems. To reduce soil loss from a watershed, many management practices have been proposed worldwide. To develop proper and efficient soil erosion best management practices, soil erosion rates should be estimated spatially and temporarily. The Universal Soil Loss Equation (USLE) and USLE-based soil erosion and sediment modelling systems have been developed and tested in many countries. The Sediment Assessment Tool for Effective Erosion Control (SATEEC) system has been developed and enhanced to provide ease-of-use interface to the USLE users. However many researchers and decision makers have requested to enhance the SATEEC system for simulation of soil erosion and sediment reflecting effects of single storm event. Thus, the SATEEC R factors were estimated based on 5 day antecedent rainfall data. The SATEEC 2.1 daily R factor was applied to the study watershed and it was found that the R2 and EI values (0.776 and 0.776 for calibration and 0.927 and 0.911 for validation) with the daily R were greater than those (0.721 and 0.720 for calibration and 0.906 and 0.881 for validation) with monthly R, which was available in the SATEEC 2.0 system. As shown in this study, the SATEEC with daily R can be used to estimate soil erosion and sediment yield at a watershed scale with higher accuracy. Thus the SATEEC with daily R can be efficiently used to develop site-specific soil erosion best management practices based on spatial and temporal analysis of soil erosion and sediment yield at a daily-time step, which was not possible with USLE-based soil erosion modeling system.

Application of High Resolution Multi-satellite Precipitation Products and a Distributed Hydrological Modeling for Daily Runoff Simulation (고해상도 다중위성 강수자료와 분포형 수문모형의 유출모의 적용)

  • Kim, Jong Pil;Park, Kyung-Won;Jung, Il-Won;Han, Kyung-Soo;Kim, Gwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.263-274
    • /
    • 2013
  • In this study we evaluated the hydrological applicability of multi-satellite precipitation estimates. Three high-resolution global multi-satellite precipitation products, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), the Global Satellite Mapping of Precipitation (GSMaP), and the Climate Precipitation Center (CPC) Morphing technique (CMORPH), were applied to the Coupled Routing and Excess Storage (CREST) model for the evaluation of their hydrological utility. The CREST model was calibrated from 2002 to 2005 and validated from 2006 to 2009 in the Chungju Dam watershed, including two years of warm-up periods (2002-2003 and 2006-2007). Areal-averaged precipitation time series of the multi-satellite data were compared with those of the ground records. The results indicate that the multi-satellite precipitation can reflect the seasonal variation of precipitation in the Chungju Dam watershed. However, TMPA overestimates the amount of annual and monthly precipitation while GSMaP and CMORPH underestimate the precipitation during the period from 2002 to 2009. These biases of multi-satellite precipitation products induce poor performances in hydrological simulation, although TMPA is better than both of GSMaP and CMORPH. Our results indicate that advanced rainfall algorithms may be required to improve its hydrological applicability in South Korea.

Intercomparison of uncertainty to bias correction methods and GCM selection in precipitation projections (강수량예측에서 편이보정방법과 GCM 선택에 대한 불확실성 비교)

  • Song, Young Hoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.249-258
    • /
    • 2020
  • Many climate studies have used the general circulation models (GCMs) for climate change, which can be currently available more than sixty GCMs as part of the Assessment Report (AR5). There are several types of uncertainty in climate studies using GCMs. Various studies are currently being conducted to reduce the uncertainty associated with GCMs, and the bias correction method used to reduce the difference between the simulated and the observed rainfall. Therefore, this study mainly considered climate change scenarios from nine GCMs, and then quantile mapping methods were applied to correct biases in climate change scenarios for each station during the historical period (1970-2005). Moreover, the monthly rainfall for the future period (2011-2100) is obtained from the RCP 4.5 scenario. Based on the bias-corrected rainfall, the standard deviation and the inter-quartile range (IQR) from the first to third quartiles were estimated. For 2071-2100, the uncertainty for the selection of GCMs is larger than that for the selection of bias correction methods and vice versa for 2011-2040. Therefore, this study showed that the selection of GCMs and the bias correction methods can affect the result for the future climate projection.