• 제목/요약/키워드: monotonic loading test

검색결과 178건 처리시간 0.023초

고강도 콘크리트 부재의 응력블록에 관한 검토 (The Investigation of Blocks on High Strength Concrete)

  • 신성우
    • 콘크리트학회지
    • /
    • 제2권2호
    • /
    • pp.93-99
    • /
    • 1990
  • 본 연구는 극한강도 이론에 입각한 고강도 콘크리트 부재의 설계를 위한 방법 중 가장 중요한 요소의 하나인 응력-변형도 곡선의 이상화에 관한 연구이다. 이를 위하여 보통강도(280kg/$\textrm{cm}^2$)에서 초고강도(1050kg/$\textrm{cm}^2$)까지의 콘크리트를 사용하여 부재를 제작, 시험하였으며, 기존의 여러 가지 이론과 비교검토를 하였다. 주요 변수는 콘크리트 강도이외에 주근의 양과 전단 보강근의 간격으로 하였다. 실험결과 현재으 ACI Building Code에 규정된 직사각형 응격블록은 고강도 콘크리트에도 사용할 수있음을 알 수 있었다.

Cyclic mechanical model of semirigid top and seat and double web angle connections

  • Pucinotti, Raffaele
    • Steel and Composite Structures
    • /
    • 제6권2호
    • /
    • pp.139-157
    • /
    • 2006
  • In this paper, a cyclic mechanical model is presented to simulate the behaviour of top and seat with web angle beam-to-column connections. The introduced mechanical model is compared with Eurocode 3 Annex J, its extension, and with experimental data. To have a better insight regarding the actual response of the joints, available results of the experiments, carried out on full-scale top and seat angle joints under monotonic and cyclic loading, are first considered. Subsequently, a finite element model of the test setup is developed. The application of the proposed model, its comparisons with the experimental curves and with the Eurocode 3 Annex J and with its modification, clearly show the excellent quality of the model proposed.

Lateral loading test for partially confined and unconfined masonry panels

  • Tu, Yi-Hsuan;Lo, Ting-Yi;Chuang, Tsung-Hua
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.379-390
    • /
    • 2020
  • Four full-scaled partially confined and unconfined masonry panels were tested with monotonic lateral loads. To study the effects of vertical force and boundary columns, two specimens with no boundary columns were subjected to different vertical forces, while two wing-wall specimens had the column placed eccentrically and in the middle, respectively. The specimens with no boundary columns exhibited ductile rocking behavior, where the lateral strength increased with increasing vertical compression. The wing-wall specimens with columns behaved as strut-and-tie systems. The column-panel interaction resulted in greater strength, lower deformation capacity and differences in failure modes. A comparison with analytical models showed that rocking strength can be accurately estimated using vertical force and the panel aspect ratio for panels with no boundary columns. The estimation for lateral strength on the basis of a panel section area indicated scattered error for wing-wall specimens.

The Frequency Characteristics of Elastic Wave by Crack Propagation of SiC/SiC Composites

  • Kim, J.W.;Nam, K.W.
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.110-114
    • /
    • 2012
  • We studied on the nondestructive evaluation of the elastic wave signal of SiC ceramics and SiC/SiC composite ceramics under monotonic tensile loading. The elastic wave signal of cross and unidirectional SiC/SiC composite ceramics were obtained by pencil lead method and bending test. It was applied for the time-frequency method which used by the discrete wavelet analysis algorithm. The time-frequency analysis provides time variation of each frequency component involved in a waveform, which makes it possible to evaluate the contribution of SiC fiber frequency. The results were compared with the characteristic of frequency group from SiC slurry and fiber. Based on the results, if it is possible to shift up and design as a higher frequency group, we will can make the superior material better than those of exiting SiC/SiC composites.

  • PDF

탄소섬유시트에 의한 콘크리트 보의 휨보강효과에 관한 실험연구 (An Experimental Study on Flexcural Performance of Repaired R/C Beams with CFS)

  • 이리형;이용택;김승훈;강윤구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.605-610
    • /
    • 1997
  • An experimental investigation was conducted to examine the feasibility of Carbon Fiber Sheet(CFS), a kind of high strength fiber, for a repair and reinforcement method of concrete structures. The experimental program included tests of flexural beams different in wrapping method and amount of CFS. The beams were subjected to monotonic loading. Although the flexural strength for concrete members increases with wrapping methods of CFS., the reduction factor due to the distribution, amount bond of CFS should be completely examined. This study approached the effectiveness and application of CFS, along with reinforcement effects of CFS on reinforced concrete beams through tests. Test results indicated that the increase in the number of CFS layer caused the increase in strength of beams in strength.

  • PDF

Cracking behavior of RC shear walls subject to cyclic loadings

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • 제1권1호
    • /
    • pp.77-98
    • /
    • 2004
  • This paper presents a numerical model for simulating the nonlinear response of reinforced concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concrete is described by an orthotropic constitutive relation with tension-stiffening and compression softening effects defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making analytical predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing factors inducing the material nonlinearities have been considered. A simple hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic stress-strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively. To assess the applicability of the constitutive model for RC element, analytical results are compared with idealized shear panel and shear wall test results under monotonic and cyclic shear loadings.

고강도 콘크리트를 사용한 보-기둥 접합부의 비 선형 거동에 관한 기초적 연구 (A Fundmental Study of the Inlastic Behavior of High Strength Concrete Beam-Column Joints.)

  • 민정규;박현수;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.51-56
    • /
    • 1990
  • Six small-scale reinforced concrete beam-column joint specimens subjected to monotonic and cyclic loading were tested to investigate the effects of strength of concrete. Variables are 1)compressive strength of concrete(f' c=300, 700kg/㎠), 2)shear span to depth ratio (a/d=4.7, 2.0). The major results of this test were: 1)flexural strength of high strength concrete beam-column joint was not affected too much by the compressive strength of concrete, 2) flexural cracks emerge to inside of beam deeply for high strength concrete member.

  • PDF

Experimental study on ultimate torsional strength of PC composite box-girder with corrugated steel webs under pure torsion

  • Ding, Yong;Jiang, Kebin;Shao, Fei;Deng, Anzhong
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.519-531
    • /
    • 2013
  • To have a better understanding of the torsional mechanism and influencing factors of PC composite box-girder with corrugated steel webs, ultimate torsional strength of four specimens under pure torsion were analyzed with Model Test Method. Monotonic pure torsion acts on specimens by eccentric concentrated loading. The experimental results show that cracks form at an angle of $45^{\circ}$ to the member's longitudinal axis in the top and bottom concrete slabs. Longitudinal reinforcement located in the center of cross section contributes little to torsional capacity of the specimens. Torsional rigidity is proportional to shape parameter ${\eta}$ of corrugation and there is an increase in yielding torque and ultimate torque of specimens as the thickness of corrugated steel webs increases.

Damage progression study in fibre reinforced concrete using acoustic emission technique

  • Banjara, Nawal Kishor;Sasmal, Saptarshi;Srinivas, V.
    • Smart Structures and Systems
    • /
    • 제23권2호
    • /
    • pp.173-184
    • /
    • 2019
  • The main objective of this study is to evaluate the true fracture energy and monitor the damage progression in steel fibre reinforced concrete (SFRC) specimens using acoustic emission (AE) features. Four point bending test is carried out using pre-notched plain and fibre reinforced (0.5% and 1% volume fraction) - concrete under monotonic loading. AE sensors are affixed at different locations of the specimens and AE parameters such as rise time, AE energy, hits, counts, amplitude and duration etc. are obtained. Using the captured and processed AE event data, fracture process zone is identified and the true fracture energy is evaluated. The AE data is also employed for tracing the damage progression in plain and fibre reinforced concrete, using both parametric- and signal- based techniques. Hilbert - Huang transform (HHT) is used in signal based processing for evaluating instantaneous frequency of the acoustic events. It is found that the appropriately processed and carefully analyzed acoustic data is capable of providing vital information on progression of damage on different types of concrete.

In-situ fatigue monitoring procedure using nonlinear ultrasonic surface waves considering the nonlinear effects in the measurement system

  • Dib, Gerges;Roy, Surajit;Ramuhalli, Pradeep;Chai, Jangbom
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.867-876
    • /
    • 2019
  • Second harmonic generation using nonlinear ultrasonic waves have been shown to be an early indicator of possible fatigue damage in nuclear power plant components. This technique relies on measuring amplitudes, making it highly susceptible to variations in transducer coupling and instrumentation. This paper proposes an experimental procedure for in-situ surface wave nonlinear ultrasound measurements on specimen with permanently mounted transducers under high cycle fatigue loading without interrupting the experiment. It allows continuous monitoring and minimizes variation due to transducer coupling. Moreover, relations describing the effects of the measurement system nonlinearity including the effects of the material transfer function on the measured nonlinearity parameter are derived. An in-situ high cycle fatigue test was conducted using two 304 stainless steel specimens with two different excitation frequencies. A comprehensive analysis of the nonlinear sources, which result in variations in the measured nonlinearity parameters, was performed and the effects of the system nonlinearities are explained and identified. In both specimens, monotonic trend was observed in nonlinear parameter when the value of fundamental amplitude was not changing.