• Title/Summary/Keyword: monophyly

Search Result 38, Processing Time 0.026 seconds

Phylogeny and systematics of Crossosomatales as inferred from chloroplast atpB, matK, and rbcL sequences

  • Oh, Sang-Hun
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.4
    • /
    • pp.208-217
    • /
    • 2010
  • Crossosomatales is a recently recognized order in the rosid II clade with about 64 species in eight morphologically distinct families that have been previously classified in as many as 15 other orders. Phylogenetic relationships among the families and genera within Crossosomatales were investigated using chloroplast atpB, matK, and rbcL sequences employing maximum parsimony, maximum likelihood, and Bayesian methods. The phylogenetic framework was used to examine the patterns of morphological evolution and synapomorphies for subclades within Crossosomatales. The combined data with representative species from all genera in the order strongly supported monophyly of Crossosomatales. Strong support was found for the families in the Southern Hemisphere, in which Aphloiaceae is sister to the clade of (Geissolomataceae, (Ixerbaceae + Strasburgeriaceae)). The sister relationship between the Southern Hemisphere clade and families distributed primarily in the Northern Hemisphere was also supported. As in the previous studies, following relationships were found within the Northern Hemisphere clade: Staphyleaceae is sister to a clade of (Guamatelaceae, (Stachyuraceae + Crossosomataceae)). The pattern analysis indicates that evolutionary pattern of morphological characters is complex, requiring multiple changes within Crossosomatales. Several reproductive traits, such as inflorescence, aril, stigma, and conspicuous protrusion from pollen aperture, corroborate the molecular phylogeny.

Sinuolinea capsularis (Myxosporea: Sinuolineidae) Isolated from Urinary Bladder of Cultured Olive Flounder Paralichthys olivaceus

  • Shin, Sang Phil;Jin, Chang Nam;Sohn, Han Chang;Lee, Jehee
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.127-134
    • /
    • 2019
  • Sinuolinea capsularis Davis, 1917 is myxosporean that infect the urinary system of the host fish. Insufficient morphological and molecular data of S. capsularis exits, and it is therefore difficult to make an accurate identification of the parasite. We tried a series of morphological and molecular analysis to identify an myxosporean isolated from urinary bladder of cultured olive flounder, Paralichthys olivaceus, from Jeju island in the Republic of Korea. Some of them were observed under a light microscope and SEM, and remain samples were used molecular and phylogenetic analysis. Mature spores were subspherical, measuring $13.9{\pm}0.6{\mu}m$ in length and $13.8{\pm}0.8{\mu}m$ in width. Two spherical polar capsules on opposite sides in the middle of the spore had a diameter range of $4.3{\pm}0.4{\mu}m$. Scanning electron microscopy revealed that spores a severely twisted the suture line. By the morphological comparison and analysis, it was identified as S. capsularis. In addition, we obtained the partial 18S rDNA of S. capsularis and first registered it in NCBI. Phylogenetic analysis showed that S. capsularis clustered with Zschokkella subclade infecting the urinary system of marine fish, and it supported the infection site tropism effect on phylogeny of marine myxosporeans as well as the origin of Sinuolinea is not monophyly.

Development of a Plastid DNA-Based Maker for the Identification of Five Medicago Plants in South Korea

  • Kim, Il Ryong;Yoon, A-Mi;Lim, Hye Song;Lee, Sunghyeon;Lee, Jung Ro;Choi, Wonkyun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.4
    • /
    • pp.212-220
    • /
    • 2022
  • DNA markers have been studied and used intensively to identify plant species based on molecular approaches. The genus Medicago belongs to the family Fabaceae and contains 87 species distributed from the Mediterranean to central Asia. Five species of Medicago are known to be distributed in South Korea; however, their morphological characteristics alone cannot distinguish the species. In this study, we analyzed the phylogenetic relationships using collected five species of Medicago from South Korea and 44 taxa nucleotide information from NCBI. The constructed phylogenetic tree using gibberellin 3-oxidase 1 and tRNALys (UUU) to maturase K gene sequences showed the monophyly of the genus Medicago, with five species each forming a single clade. These results suggest that there are five species of Medicago distributed in South Korea. In addition, we designed polymerase chain reaction primers for species-specific detection of Medicago by comparing the plastid sequences. The accuracy of the designed primer pairs was confirmed for each Medicago species. The findings of this study provide efficient and novel species identification methods for Medicago, which will assist in the identification of wild plants for the management of alien species and living modified organisms.

Systematic study of Korean Asparagus L. based on morphology and nuclear ITS sequences (외부형태와 ITS 염기서열에 기초한 한국산 비짜루속 식물의 분류학적 고찰)

  • Cho, Seong-Hyun;Kim, Young-Dong
    • Korean Journal of Plant Taxonomy
    • /
    • v.42 no.3
    • /
    • pp.185-196
    • /
    • 2012
  • Morphological and geographical examinations as well as phylogenetic analyses using ITS sequences were performed for Asparagus L. in Korea. A total of five species of Asparagus were confirmed to be distributed in South Korea. The shape of cladophylls, length of pedicels, and shape of perianth were considered to be important characteristics for the identification of Koran Asparagus species. A monophyly of each species was evident in the ITS phylogenetic trees in which multiple accessions (5 to 24, depending on species) represented each of the five Korean species. A. rigidulus Nakai, once considered conspecific to A. schoberioides Kunth, formed a distinct lineage in the ITS trees. Pedicels of A. rigidulus, which is distributed mainly in coastal areas, were about two times longer than those of A. schoberioides occurring in inland areas, suggesting that they should be treated as distinct taxa.

Phylogenetic Relationships among Groupers (Genus Epinephelus) Based on Mitochondrial Cytochrome b DNA Sequences

  • KANG Geo Young;SONG Choon Bok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.5
    • /
    • pp.414-422
    • /
    • 2004
  • To infer phylogenetic relationships among Epinephelus species inhabiting coastal regions of Korean peninsula, mitochondrial cytochrome b genes from 9 species belonging to the subfamily Epinephelinae were PCR-amplified, cloned and sequenced. Aligned cytochrome b sequences of 10 species containing one additional sequence from GenBank were 1,140 base pairs in length, including 439 variable and 330 parsimony informative sites. The cytochrome b genes of 10 species, as other vertebrates studied to date, exhibit unequal base compositions: an entirely low G content ($15.2{\pm}0.3{\%}$on average) and almost equal T, C and A contents ($29.3{\pm}0.8{\%},\;30.7{\pm}1.0{\%},\;and\;24.8{\pm}0.5{\%}$ on average, respectively).In third codon positions, transitional substitutions especially between Epinephelus species and outgroup species are almost certainly saturated or near saturation. Phylogenetic analyses were performed with sequence data from 8 Epinephelus species and 2 outgroup species (Cephalopholis urodela and Vaviola louti) by using distance-based (neighbor-joining and minimum evolution) and parsimony-based (maximum parsimony) methods. The results showed that the monophyly of the genus Epinephelus was supported by relatively high bootstrap values. However, phylogenetic relationships among E. areolatus, E. moara, E. septemfasciatus, and Epinephelus sp were poorly resolved. Within the genus Epinephelus, three resolved monophyletic groups were found: clade 1 included E. akaara and E. awoara;, clade 2 included E. fasciatus and E. merra; and clade 3 included E. akaara, E. awoara, E. fasciatus, E. merra, E. areolatus, E. moara, E. septemfasciatus and Epinephelus Sp.

Molecular Systematics of Korean Cobitids Based on Mitochondrial Cytochrome b Sequence

  • Kim, So-Young;Kim, Chang-Bae;Kim, Ik-Soo;Park, Jong-Young;Park, Ho-Yong
    • Animal cells and systems
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 2002
  • We compared the complete mitochondrial cytochrome b gene sequences of Korean and European cobitids to provide independent evidence for assessment of systematic and biogeographic relationships of species in the genus Cobitis. The data suggested monophyly of the genus Cobitis and the inclusion of Korean Cobitis species within the group having one lamina circularis, a primitive condition. Also, all the phylogenetic analyses using maximum parsimony, maximum likelihood, and neighbor joining methods showed a monophyletic relationship among Cobitis. The basal position of the Caspian C. cf. sibirica reported here reflects the eastern Asiatic origin cf. the European Cobitis and establishes C. cf. sibirica as an independent lineage. The Korean C. pacifica diverged next to C. cf. sibirica in basal group from the genus Cobitis. This result is in agreement with the hypothesized Asiatic origin of some European freshwater fish lineages. The phylogenetic relationships in this study showed a close affinity between C. zanadreai and C. sinensis. Two new species, C. tetralineata and C. pacifica in Korea also are closely related to monophyletic group clustering the type species of the Acanestrinia subgenus (C. elongata) with all the endemic Italian species (C. bilineata and C. zanandreai). This may suggest that the affinity between the Korean and Danubian-Italian imply genetic convergence or genetic plesiomorphic state between allopatric species that are separated for the Miocene. The mtDNA-based phylogeny for the species of the genus Cobitis from Kores and Europe permits phylogenetic assessment of the morphological transitions of Iamina circularis.

Molecular Phylogeny and Taxonomic Review of the Family Liparidae (Scorpaenoidei) from Korea (한국산 꼼치과 어류의 분자계통 및 분류학적 재검토)

  • Song, Young Sun;Ban, Tae-woo;Kim, Jin-Koo
    • Korean Journal of Ichthyology
    • /
    • v.27 no.3
    • /
    • pp.165-182
    • /
    • 2015
  • The snailfishes (Scorpaenoidei: Liparidae) is a large group requiring taxonomic reviews because of a potential taxonomic confusion due to its great similarity in external morphology between species and a variation of its body color with size. Molecular phylogeny and taxonomic review were conducted for 10 species in 3 genera reported around the Korean waters, which facilitate understanding interrelationship within its family, and further management of fisheries resources. Molecular phylogeny using mitochondrial COI (mtCOI) and nuclear RAG2 (nRAG2) sequences indicates that the reciprocal monophyly of the three genera (Careproctus, Crystallichthys, and Liparis) were supported except Crystallichthys matsushimae, being closely related to Careproctus notosaikaiensis in only mtDNA COI topology. Liparis ingens Gilbert and Burke (1912) was reported as a distinct species differing from L. ochotensis. However, in the present study, comparing L. ingens from Korea with L. ochotensis from Japan and Russia, the two species were well corresponded in their morphology and molecule, therefore, we suggest L. ingens to be treated as a junior synonym of L. ochotensis.

A new species of Parastenocaris from Korea, with a redescription of the closely related P. biwae from Japan (Copepoda: Harpacticoida: Parastenocarididae)

  • Karanovic, Tomislav;Lee, Wonchoel
    • Journal of Species Research
    • /
    • v.1 no.1
    • /
    • pp.4-34
    • /
    • 2012
  • Parastenocaris koreana sp. nov. is described based on examination of numerous adult specimens of both sexes from several localities in Korea. Scanning electron micrographs are used to examine intra- and interpopulation variability of micro-characters, in addition to light microscopy. The new species is most closely related to the Japanese P. biwae Miura, 1969, which we redescribe based on newly collected material from the Lake Biwa drainage area. The two species differ in size, relative length of the caudal rami, shape of the anal operculum, shape of the genital double somite, relative length of the inner distal process on the female fifth leg, as well as relative length of the apical setae on the second, third, and fourth legs exopods in both sexes. Detailed examinations of three disjunct populations of P. koreana reveal also some geographical variation, especially in the surface ornamentation of somites, which may indicate some population structuring or even cryptic speciation. Lack of intraspecific variability in the number and position of sensilla on somites, as well as their potential phylogenetic significance, is a novel discovery. Both species examined here belong to the brevipes group, which we redefine to include 20 species from India (including Sri Lanka), Australia, East Asia, Northern Europe, and North America. A key to species of this group is also provided. In order to test the monophyly of the redefined brevipes group with highly disjunct distribution, as well as relationship between different species, a cladistics analysis is performed based on 39 morphological characters and with help of three outgroup taxa. Six equally parsimonious cladograms are generated, all of which show that the ingroup is well defined by at least three synapomorphies. Reconstructed phylogeny questions the previously suggested hypothesis about the origin of this group in South East Asia, with one Australian species showing the most basal position. We speculate that the present distribution of this group may be a combination of ancient vicariance and subsequent dispersal, with a possible origin in the Gondwanaland, in the rift valley between Australia and India.

Comparative Analysis of Nucleotide Sequence and Codon Usage of Arylphorin Gene Cloned from Four Silk-Producing Insects and Their Molicular Phylogenetics

  • Lee, Sang-Mong;Hwang, Jae-Sam;Lee, Jin-Sung;Goo, Tae-Won;Kwon, O-Yu;Kim, Ho-Rak
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.84-89
    • /
    • 1999
  • To determine phylogenetic relatedness of four silk-producing silkmoths (B. mori, B. mandarina, A. yamamai and A. pernyi), internal coding region of arylphorin which is a storage protein in hemolymph protein of insects were amplified by polymerase chain reaction and then sequenced and compared each other. The nucleotide composition was biased toward adenine and thymine(59% A+T) and a strong bias for use of C in the third position of codons was found for Phe and Tyr. Together TTC(Phe) and TAC(Tyr) account for about 16.8% (10 for TTC and 8 for TAC) of all codon usage. The nucleotide similarity of arylphorin gene from B. mori showed 99%, 98% and 97% homology with those of B. mandarina, A. yamamai and A. pernyi, respectively. Also, the nucleotide sequence of arylphorin gene from B. mandarina showed 98% and 97% homology with those of A. yamamai and A.pernyi, respectively. Between A. yamamai and A. pernyi, the sequence homology was 97%. The deduced amino acid sequences in B. mori, B. mandarina and A. yamamai showed almost 99% homology. Although the aryphorin gene provided insufficient variability among the four insect species, A UPGMA tree is generated that supported the monophyly of silk-producing insects, with M. sexta placed basal to it. It is suggest that silk-producing insects have a close relationship and a homogeneous genetic background from comparison with those of other insects.

  • PDF

Complete Mitochondrial Genome of the Gypsy Moth, Lymantria dispar (Lepidoptera: Erebidae) (매미나방의 미토콘드리아 게놈 분석)

  • Na Ra, Jeong;Youngwoo, Nam;Wonhoon, Lee
    • Korean journal of applied entomology
    • /
    • v.61 no.3
    • /
    • pp.507-512
    • /
    • 2022
  • The Gypsy moth, Lymantria dispar (Linnaeus, 1758) (Lepidoptera: Erebidae) is a serious pest that attacks forest as well as fruit trees. We sequenced the 15,548 bp long complete mitochondrial genome (mitogenome) of this species. It consists of a typical set of genes (13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes) and one major non-coding A + T-rich region. The orientation and gene order of the L. dispar mitogenome are identical to that of the ancestral type found in majority of the insects. Phylogenetic analyses using concatenated sequences of 13 PCGs and 2 rRNAs (13,568 bp including gaps) revealed that the L. dispar examined in our study, together with other geographical samples of L. dispar in a group forming the family Erebidae and consistently supported the monophyly of each family (Erebidae, Euteliidae, Noctuidae, Nolidae and Notodontidae), generally with the highest nodal supports.