• Title/Summary/Keyword: monophyly

Search Result 38, Processing Time 0.022 seconds

Phylogenetic Relationships Among Six Vetigastropod Subgroups (Mollusca, Gastropoda) Based on 18S rDNA Sequences

  • Yoon, Sook Hee;Kim, Won
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.283-288
    • /
    • 2005
  • Complete 18S rDNA sequences were determined for 10 vetigastropods in order to investigate the phylogeny of Vetigastropoda, which is controversial. These sequences were analyzed together with published sequences for nine other vetigastropods and two nerites. With the two nerites as outgroups, the phylogeny was inferred by three analytical methods, neighbor-joining, maximum likelihood, and maximum parsimony. The 18S rDNA sequence data support the monophyly of four vetigastropod superfamilies, the Pleurotomarioidea, the Fissurelloidea, the Haliotoidea, and the Trochoidea. The present results yield the new branching order: (Pleurotomarioidea (Fissurelloidea ((Scissurelloidea, Lepetodriloidea) (Haliotoidea, Trochoidea)))) within the vetigastropod clade.

18S Ribosomal DNA Sequences Provide Insight into the Phylogeny of Patellogastropod Limpets (Mollusca: Gastropoda)

  • Yoon, Sook Hee;Kim, Won
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • To investigate the phylogeny of Patellogastropoda, the complete 18S rDNA sequences of nine patellogastropod limpets Cymbula canescens (Gmelin, 1791), Helcion dunkeri (Krauss, 1848), Patella rustica Linnaeus, 1758, Cellana toreuma (Reeve, 1855), Cellana nigrolineata (Reeve, 1854), Nacella magellanica Gmelin, 1791, Nipponacmea concinna (Lischke, 1870), Niveotectura pallida (Gould, 1859), and Lottia dorsuosa Gould, 1859 were determined. These sequences were then analyzed along with the published 18S rDNA sequences of 35 gastropods, one bivalve, and one chiton species. Phylogenetic trees were constructed by maximum parsimony, maximum likelihood, and Bayesian inference. The results of our 18S rDNA sequence analysis strongly support the monophyly of Patellogastropoda and the existence of three subgroups. Of these, two subgroups, the Patelloidea and Acmaeoidea, are closely related, with branching patterns that can be summarized as [(Cymbula + Helcion) + Patella] and [(Nipponacmea + Lottia) + Niveotectura]. The remaining subgroup, Nacelloidea, emerges as basal and paraphyletic, while its genus Cellana is monophyletic. Our analysis also indicates that the Patellogastropoda have a sister relationship with the order Cocculiniformia within the Gastropoda.

Complete Mitogenome of the Russian Sturgeon Acipenser gueldenstaedtii (Acipenseriformes; Acipenseridae)

  • Kim, Keun-Yong;Lee, Sang-Yoon;Song, Ha-Yeun;Park, Chul-Hong;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • Sturgeons and paddlefishes are frequently referred to as 'living fossils' among the actionpterygian lineage. They are increasingly facing threats to their existence because of various anthropogenic pressures. In this study, we present the complete mitogenome sequence of the Russian sturgeon Acipenser gueldenstaedtii (Acipenseriformes; Acipenseridae). The mitogenome showed highly homogeneous molecular features compared to previously known vertebrate mitogenomes. Phylogenetic tree inferred from concatenated protein-coding and tRNA genes unambiguously revealed the monophyly of A. gueldenstaedtii, Acipenser stellatus, and Huso huso. Genetic information of the endangered A. gueldenstaedtii will provide baseline data needed to develop molecular markers for stock identification and assessment of population diversity and also to develop future conservation strategies.

Inclusion of Cephalotaxus in Taxaceae: Evidence from morphology and anatomy

  • GHIMIRE, Balkrishna;JEONG, Mi-Jin;LEE, Chunghee;HEO, Kweon
    • Korean Journal of Plant Taxonomy
    • /
    • v.48 no.2
    • /
    • pp.109-114
    • /
    • 2018
  • The inconsistent relationship between the monogeneric family Cephalotaxaceae and Taxaceae was discussed and the possibility of merging Cephalotaxus within Taxaceae was also reviewed. Our previous reports (cladistics analysis, leaf anatomy and wood anatomy of Taxaceae s.l.) did not find a feasible reason to create a distinction between Cephalotaxus and other Taxad genera (Taxus, Pseudotaxus, Amentotaxus, Torreya and, Austrotaxus) and thus argued for a broader concept of Taxaceae with Cephalotaxus. The monophyly of Taxaceae including Cephalotaxus is described in various contemporary molecular studies, and some of them are in support of the single large family Taxaceae with six genera. Although additional comprehensive studies in the future may perhaps weaken the precise association between Cephalotaxaceae and other Taxad genera, on the basis of recent corroborations, at this moment Taxaceae should be redefined with broad circumscriptions, including Cephalotaxus.

On the Debates of Arthropod Phylogeny (절지동물 계통에 관한 논쟁)

  • 황의욱
    • Animal Systematics, Evolution and Diversity
    • /
    • v.18 no.1
    • /
    • pp.165-179
    • /
    • 2002
  • In spite of dramatic change of environmental condition since Cambrian big-bang (explosion occurred ca.540 mya, the phylum Arthropoda retains a great diversity, and it is estimated approximately that 1-10 million arthropod species are extant on the earth. Except for an extinct arthopod subphylum Trilobita, extant arthropods could be divided into five subphyla: Hexapoda, Crustacea, Myriapoda, Chelicerata, and Pycnosonida. During the last century, systematists have disputed about interrealtionships among Arthropoda and its relatives (Onychophora, Tardigrada, and Pentastomida), arthropod phylogenetic position within protostome animals, monophyly or polyphyly of the phylum Arthropods, and interrelationships among five arthropod subgroups (subphyla) etc. Recently, new animal phylogeny was reported that protostomes could be clustered into two groups, Lophotrochozoa and Ecdysozoa, and molting animals such as Nematoda and Arthropoda were included within the Ecdysozoa. On the basis of the new animal phylogeny, first of all, I would mention phylogenetic positions and relationships of Arthropods and its relatives to introduce controversies of arthropod phylogeny in phylum level of animals. After that, I focused mainly on the controveries related to arthropod monophyly and phylogenetic relationships among four major arthropod groups except Pycnogonida. In this work, Pycnogonida which is a relatively small group and one of the five arthropod subphyla was not handled significantly although there are some controversies if it is a sister taxon of chelicerates or the most primitive arthropod group (namely, a sister of four remains arthropod groups).

Monophyly of the Family Desmoscolecidae (Nematoda, Demoscolecida) and Its Phylogenetic Position Inferred from 18S rDNA Sequences

  • Hwang, Ui Wook;Choi, Eun Hwa;Kim, Dong Sung;Decraemer, Wilfrida;Chang, Cheon Young
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.515-523
    • /
    • 2009
  • To infer the monophyletic origin and phylogenetic relationships of the order Desmoscolecida, a unique and puzzling group of mainly free-living marine nematodes, we newly determined nearly complete 18S rDNA sequences for six marine desmoscolecid nematodes belonging to four genera (Desmoscolex, Greeffiella, Tricoma and Paratricoma). Based on the present data and those of 72 nematode species previously reported, the first molecular phylogenetic analysis focusing on Desmoscolecida was done by using neighbor joining (NJ), maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) methods. All four resultant trees consistently and strongly supported that the family Desmoscolecidae forms a monophyletic group with very high node confidence values. The monophyletic clade of desmocolecid nematodes was placed as a sister group of the clade including some members of Monhysterida and Araeolaimida, Cyartonema elegans (Cyartonematidae) and Terschellingia Iongicaudata (Linhomoeidae) in all the analyses. However, the present phylogenetic trees do not show any direct attraction between the families Desmoscolecidae and Cyartonematidae. Within the monophyletic clade of the family Desmoscolecidae in all of the present phylogenetic trees, there were consistently observed two distinct subgroups which correspond to the subfamilies Desmoscolecinae [Greeffiella sp. + Desmoscolex sp.] and Tricominae [Paratricoma sp. + Tricoma sp].

Morphology and plastid psbA phylogeny of Zygnema (Zygnemataceae, Chlorophyta) from Korea: Z. insigne and Z. leiospermum

  • Kim, Jee-Hwan;Boo, Sung Min;Kim, Young Hwan
    • ALGAE
    • /
    • v.27 no.4
    • /
    • pp.225-234
    • /
    • 2012
  • Zygnema is a conjugating filamentous green algal genus that is distributed in a broad range of freshwater habitats, from sea level to alpine summits. Although more than 150 species have been described worldwide, their taxonomy remains unclear, probably owing to their relatively simple morphology. We investigated the detailed morphology of Korean Zygnema species, combined with analysis of the plastid psbA gene from 22 specimens of the genus and putative relatives, in order to develope a key to their identification and isolation, and to determine their relationships. We recognized two species of Zygnema; Z. insigne and Z. leiospermum, based on morphological characters such as width of the vegetative cell, position of zygospores, dimensions and form of spores, shape of female gametangia, and color of mesospores. The analysis of psbA data was consistent with morphological comparison. The pairwise divergence between two species was 3.7-4.1% (34-38 bp) in psbA sequences. The phylogeny of psbA revealed the monophyly of Z. insigne and Z. leiospermum together with two isolates of Z. circumcarinatum from Germany and Scotland. This is the first report on the psbA gene phylogeny of Zygnema.

Phylogenetic position of Carex splendentissima, a Korean endemic sedge (Cyperaceae)

  • CHUNG, Kyong-Sook;YANG, Sungyu;NAM, Bo-Mi
    • Korean Journal of Plant Taxonomy
    • /
    • v.50 no.3
    • /
    • pp.253-261
    • /
    • 2020
  • Carex splendentissima U. Kang & J. M. Chung, endemic to the Korean peninsula, is characterized by staminate terminal spikes and glabrous elliptic perigynia. Based on its broad leaves, androgynous spikes, and tri-stigmatic features, the species has been placed in Carex sect. Siderostictae Franch. ex Ohwi, an East Asian section and a basal group in the genus. To clarify the monophyly and phylogenetic position of the species, a molecular study using the internal transcribed spacer region of nuclear ribosomal DNA and chloroplast DNA (trnL-F) data was conducted. The DNA sequence data of ten taxa in sect. Siderostictae and closely related taxa (two taxa in sect. Surculosae) with outgroups were analyzed based on maximum parsimony and maximum likelihood (ML) criteria. In the analyses, C. splendentissima was monophyletic and placed within the Siderostictae clade (sect. Siderostictae + two species of sect. Surculosae), forming a clade with C. ciliatomarginata and C. pachygyna (endemic to Japan). The clade (C. splendentissima + C. ciliatomarginata + C. pachygyna) shows evidence of diploidy. Furthermore, C. splendentissima is a sister to C. ciliatomarginata in the ML tree, and the two taxa have staminate terminal spikes. This study also updates the distribution of C. splendentissima and provides keys to the four Korean taxa in sect. Siderostictae. To conserve the endemic species C. splendentissima, further research on its genetic and ecological features should be conducted at the population level.

Molecular Phylogeny of the Subfamily Tephritinae (Diptera: Tephritidae) Based on Mitochondrial 16S rDNA Sequences

  • Han, Ho-Yeon;Ro, Kyung-Eui;McPheron, Bruce A.
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.78-88
    • /
    • 2006
  • The phylogeny of the subfamily Tephritinae (Diptera: Tephritidae) was reconstructed from mitochondrial 16S ribosomal RNA gene sequences using 53 species representing 11 currently recognized tribes of the Tephritinae and 10 outgroup species. The minimum evolution and Bayesian trees suggested the following phylogenetic relationships: (1) monophyly of the Tephritinae was strongly supported; (2) a sister group relationship between the Tephritinae and Plioreocepta was supported by the Bayesian tree; (3) the tribes Tephrellini, Myopitini, and Terelliini (excluding Neaspilota) were supported as monophyletic groups; (4) the non-monophyletic nature of the tribes Dithrycini, Eutretini, Noeetini, Tephritini, Cecidocharini, and Xyphosiini; and (5) recognition of 10 putative tribal groups, most of which were supported strongly by the statistical tests of the interior branches. Our results, therefore, convincingly suggest that an extensive rearrangement of the tribal classification of the Tephritinae is necessary. Since our sampling of taxa heavily relied on the current accepted classification, some lineages identified by the present study were severely under-sampled and other possible major lineages of the Tephritinae were probably not even represented in our dataset. We believe that our results provide baseline information for a more rigorous sampling of additional taxa representing all possible major lineages of the subfamily, which is essential for a comprehensive revision of the tephritine tribal classification.

New report on cyanophyte in Korea, Microseira wollei (Farlow ex Gomont) G.B.McGregor and Sendall ex Kennis (Oscillatoriaceae)

  • Bae, Eun Hee;Kang, Jae-Shin;Park, Chong-Sung
    • Journal of Species Research
    • /
    • v.9 no.3
    • /
    • pp.210-217
    • /
    • 2020
  • Microseira wollei (Farlow ex Gomont) G.B.McGregor and Sendall ex Kennis, a mat-forming filamentous harmful cyanobacterium, has historically been found in the United States. Microseira wollei produces neurotoxins and hepatotoxins which affect declining water quality. In the present research, we report of unrecorded M. wollei with morphology, TEM anatomy, molecular phylogeny on the Korean population. Based on 16S rRNA gene sequences, Korean population were different by 0.02% (2 bp) to the Japanese population, 1.2-1.3% to the Australian population, and 2.5-3.7% to the United States populations. nifH gene sequences were 8.4-8.7% different to Australian ones and 3.5-3.8% to other population, however molecular phylogenetic analysis of M. wollei living in Korea revealed monophyly with the geographical populations of U.S.A., Australia, and other geographical populations. Since the mat of M. wollei has been reported to be maintained for several years in other countries, it is necessary further investigate the seasonal and regional distribution of this species in Korea.