• Title/Summary/Keyword: monomial ideal

Search Result 9, Processing Time 0.018 seconds

SOME RESULTS OF MONOMIAL IDEALS ON REGULAR SEQUENCES

  • Naghipour, Reza;Vosughian, Somayeh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.711-720
    • /
    • 2021
  • Let R denote a commutative noetherian ring, and let 𝐱 := x1, …, xd be an R-regular sequence. Suppose that 𝖆 denotes a monomial ideal with respect to 𝐱. The first purpose of this article is to show that 𝖆 is irreducible if and only if 𝖆 is a generalized-parametric ideal. Next, it is shown that, for any integer n ≥ 1, (x1, …, xd)n = ⋂P(f), where the intersection (irredundant) is taken over all monomials f = xe11 ⋯ xedd such that deg(f) = n - 1 and P(f) := (xe1+11, ⋯, xed+1d). The second main result of this paper shows that if 𝖖 := (𝐱) is a prime ideal of R which is contained in the Jacobson radical of R and R is 𝖖-adically complete, then 𝖆 is a parameter ideal if and only if 𝖆 is a monomial irreducible ideal and Rad(𝖆) = 𝖖. In addition, if a is generated by monomials m1, …, mr, then Rad(𝖆), the radical of a, is also monomial and Rad(𝖆) = (ω1, …, ωr), where ωi = rad(mi) for all i = 1, …, r.

DEPTH AND STANLEY DEPTH OF TWO SPECIAL CLASSES OF MONOMIAL IDEALS

  • Xiaoqi Wei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.147-160
    • /
    • 2024
  • In this paper, we define two new classes of monomial ideals I𝑙,d and Jk,d. When d ≥ 2k + 1 and 𝑙 ≤ d - k - 1, we give the exact formulas to compute the depth and Stanley depth of quotient rings S/It𝑙,d for all t ≥ 1. When d = 2k = 2𝑙, we compute the depth and Stanley depth of quotient ring S/I𝑙,d. When d ≥ 2k, we also compute the depth and Stanley depth of quotient ring S/Jk,d.

A SOLUTION OF EGGERT'S CONJECTURE IN SPECIAL CASES

  • KIM, SEGYEONG;PARK, JONG-YOULL
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.399-404
    • /
    • 2005
  • Let M be a finite commutative nilpotent algebra over a perfect field k of prime characteristic p and let $M^p$ be the sub-algebra of M generated by $x^p$, $x{\in}M$. Eggert[3] conjectures that $dim_kM{\geq}pdim_kM^p$. In this paper, we show that the conjecture holds for $M=R^+/I$, where $R=k[X_1,\;X_2,\;{\cdots},\;X_t]$ is a polynomial ring with indeterminates $X_1,\;X_2,\;{\cdots},\;X_t$ over k and $R^+$ is the maximal ideal of R generated by $X_1,\;X_2,{\cdots},\;X_t$ and I is a monomial ideal of R containing $X_1^{n_1+1},\;X_2^{n_2+1},\;{\cdots},\;X_t^{n_t+1}$ ($n_i{\geq}0$ for all i).

  • PDF

CONSECUTIVE CANCELLATIONS IN FILTERED FREE RESOLUTIONS

  • Sharifan, Leila
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1077-1097
    • /
    • 2019
  • Let M be a finitely generated module over a regular local ring (R, n). We will fix an n-stable filtration for M and show that the minimal free resolution of M can be obtained from any filtered free resolution of M by zero and negative consecutive cancellations. This result is analogous to [10, Theorem 3.1] in the more general context of filtered free resolutions. Taking advantage of this generality, we will study resolutions obtained by the mapping cone technique and find a sufficient condition for the minimality of such resolutions. Next, we give another application in the graded setting. We show that for a monomial order ${\sigma}$, Betti numbers of I are obtained from those of $LT_{\sigma}(I)$ by so-called zero ${\sigma}$-consecutive cancellations. This provides a stronger version of the well-known cancellation "cancellation principle" between the resolution of a graded ideal and that of its leading term ideal, in terms of filtrations defined by monomial orders.

FOOTPRINT AND MINIMUM DISTANCE FUNCTIONS

  • Nunez-Betancourt, Luis;Pitones, Yuriko;Villarreal, Rafael H.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.85-101
    • /
    • 2018
  • Let S be a polynomial ring over a field K, with a monomial order ${\prec}$, and let I be an unmixed graded ideal of S. In this paper we study two functions associated to I: The minimum distance function ${\delta}_I$ and the footprint function $fp_I$. It is shown that ${\delta}_I$ is positive and that $fp_I$ is positive if the initial ideal of I is unmixed. Then we show that if I is radical and its associated primes are generated by linear forms, then ${\delta}_I$ is strictly decreasing until it reaches the asymptotic value 1. If I is the edge ideal of a Cohen-Macaulay bipartite graph, we show that ${\delta}_I(d)=1$ for d greater than or equal to the regularity of S/I. For a graded ideal of dimension ${\geq}1$, whose initial ideal is a complete intersection, we give an exact sharp lower bound for the corresponding minimum distance function.

ON THE (n, d)th f-IDEALS

  • GUO, JIN;WU, TONGSUO
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.685-697
    • /
    • 2015
  • For a field K, a square-free monomial ideal I of K[$x_1$, . . ., $x_n$] is called an f-ideal, if both its facet complex and Stanley-Reisner complex have the same f-vector. Furthermore, for an f-ideal I, if all monomials in the minimal generating set G(I) have the same degree d, then I is called an $(n, d)^{th}$ f-ideal. In this paper, we prove the existence of $(n, d)^{th}$ f-ideal for $d{\geq}2$ and $n{\geq}d+2$, and we also give some algorithms to construct $(n, d)^{th}$ f-ideals.

RESOLUTION OF UNMIXED BIPARTITE GRAPHS

  • Mohammadi, Fatemeh;Moradi, Somayeh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.977-986
    • /
    • 2015
  • Let G be a graph on the vertex set $V(G)=\{x_1,{\cdots},x_n\}$ with the edge set E(G), and let $R=K[x_1,{\cdots},x_n]$ be the polynomial ring over a field K. Two monomial ideals are associated to G, the edge ideal I(G) generated by all monomials $x_i,x_j$ with $\{x_i,x_j\}{\in}E(G)$, and the vertex cover ideal $I_G$ generated by monomials ${\prod}_{x_i{\in}C}{^{x_i}}$ for all minimal vertex covers C of G. A minimal vertex cover of G is a subset $C{\subset}V(G)$ such that each edge has at least one vertex in C and no proper subset of C has the same property. Indeed, the vertex cover ideal of G is the Alexander dual of the edge ideal of G. In this paper, for an unmixed bipartite graph G we consider the lattice of vertex covers $L_G$ and we explicitly describe the minimal free resolution of the ideal associated to $L_G$ which is exactly the vertex cover ideal of G. Then we compute depth, projective dimension, regularity and extremal Betti numbers of R/I(G) in terms of the associated lattice.

SQUAREFREE ZERO-DIVISOR GRAPHS OF STANLEY-REISNER RINGS

  • Nikseresht, Ashkan
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1381-1388
    • /
    • 2018
  • Let ${\Delta}$ be a simplicial complex, $I_{\Delta}$ its Stanley-Reisner ideal and $K[{\Delta}]$ its Stanley-Reisner ring over a field K. Assume that ${\Gamma}(R)$ denotes the zero-divisor graph of a commutative ring R. Here, first we present a condition on two reduced Noetherian rings R and R', equivalent to ${\Gamma}(R){\cong}{\Gamma}(R{^{\prime}})$. In particular, we show that ${\Gamma}(K[{\Delta}]){\cong}{\Gamma}(K^{\prime}[{\Delta}^{\prime}])$ if and only if ${\mid}Ass(I_{\Delta}){\mid}={\mid}Ass(I_{{{\Delta}^{\prime}}}){\mid}$ and either ${\mid}K{\mid}$, ${\mid}K^{\prime}{\mid}{\leq}{\aleph}_0$ or ${\mid}K{\mid}={\mid}K^{\prime}{\mid}$. This shows that ${\Gamma}(K[{\Delta}])$ contains little information about $K[{\Delta}]$. Then, we define the squarefree zero-divisor graph of $K[{\Delta}]$, denoted by ${\Gamma}_{sf}(K[{\Delta}])$, and prove that ${\Gamma}_{sf}(K[{\Delta}){\cong}{\Gamma}_{sf}(K[{\Delta}^{\prime}])$ if and only if $K[{\Delta}]{\cong}K[{\Delta}^{\prime}]$. Moreover, we show how to find dim $K[{\Delta}]$ and ${\mid}Ass(K[{\Delta}]){\mid}$ from ${\Gamma}_{sf}(K[{\Delta}])$.