• 제목/요약/키워드: monomeric and polymeric coupling agents

검색결과 4건 처리시간 0.02초

Comparison of Electrodeposited Carbon Fibers Reinforce Epoxy Composites Using Monomeric and Polymeric Coupling Agents

  • Park, Joung-Man;Kim, Yeong-Min
    • Macromolecular Research
    • /
    • 제8권4호
    • /
    • pp.153-164
    • /
    • 2000
  • By electrodeposition (ED) using a monomeric- and two polymeric coupling agents, the interfacial shear strength (IFSS) of carbon fiber/epoxy composites was investigated by fragmentation test. ED results were compared with the dipping and the untreated cases under dry and wet conditions. Multi-fiber composites (MFC) were used for the direct comparison for the untreated and the treated cases. Various treating conditions including time, concentration and temperature were evaluated, respectively. Under dry and wet conditions ED treatment exhibited much higher IFSS improvement compared to the dipping and the untreated cases. Monomeric- and polymeric coupling agents exhibited the comparative IFSS improvement. Adsorption mechanism between coupling agents and carbon fiber was analyzed in terms of the electrolyte molecular interactions during ED process based on to the chain mobility. The microfailure modes occurring from the fiber break, matrix and interlayer cracks were correlated to IFSS.

  • PDF

A study on the Interfacial Properties of Electrodeposited Single Carbon Fiber/Epoxy Composites Using Tensile and Compressive Fragmentation Tests

  • Park, Joung-Man;Kim, Jin-Won
    • Macromolecular Research
    • /
    • 제10권1호
    • /
    • pp.24-33
    • /
    • 2002
  • Interfacial and microfailure properties of carbon fiber/epoxy composites were evaluated using both tensile fragmentation and compressive Broutman tests. A monomeric and two polymeric coupling agents were applied via the electrodeposition (ED) and the dipping applications. A monomeric and a polymeric coupling agent showed significant and comparable improvements in interfacial shear strength (IFSS) compared to the untreated case under both tensile and compressive tests. Typical microfailure modes including cone-shaped fiber break, matrix cracking, and partial interlayer failure were observed under tension, whereas the diagonal slipped failure at both ends of the fractured fiber appeared under compression. Adsorption and shear displacement mechanisms at the interface were described in terms of electrical attraction and primary and secondary bonding forces.

인장/압축 Broutman Fragmentation시험법과 음향방출을 이용한 단섬유 복합재료의 미세파괴 메커니즘의 연구 (A Study on Microfailure Mechanism of Single-Fiber Composites using Tensile/Compressive Broutman Fragmentation Techniques and Acoustic Emission)

  • Park, Joung-Man;Kim, Jin-Won;Yoon, Dong-Jin
    • Composites Research
    • /
    • 제13권4호
    • /
    • pp.54-66
    • /
    • 2000
  • 탄소섬유/에폭시 복합재료의 계면 및 미세파괴 물성을 인장 fragmentation과 압축 Broutman 두 시험법과 음향방출 시험을 이용하여 평가하였다. Maleic anhydride polymeric coupling agent와 amino-silane를 각각 전기증착법 및 dipping을 통하여 섬유표면에 적용하였다. 두 coupling agents를 사용한 섬유와 기지간의 계면전단강도는 인장 및 압축 두 시험에서 모두 미처리와 비교하여 큰 증가를 나타내었다. 인장시험 동안에, 원추모양의 섬유파단과 기지의 cracking 그리고 부분적인 interlayer failure로 이루어진 전형적인 미세파괴 형태가 발생하였다. 이에 비하여, 압축시험에서는 부러진 섬유의 끝에서 대각선 방향이 슬립거동이 관찰되었다. 주어진 두 힘의 하중상태에서 섬유의 파단은 항복점 전후 부근에서 일어났다. 음향방출분포는 인장에서 섬유표면 처리와 미처리의 두 조건에서 미세파괴 신호가 잘 분리되었으며, 한편, 압축에서는 signal이 다소 중복되어 나타났다. 이는 탄소섬유의 인장력/압축력 간의 파괴에너지 차이에 기인한다고 고려된다. 탄소와 basalt 섬유복합재료의 섬유파단 waveform의 최대 voltage는 압축보다 인장시험에서 상당히 크게 나타났으며, 이들은 음향방출시험으로 파괴에너지 차이를 명확히 비교 및 확인할 수 있었다.

  • PDF

Interfacial Properties of Electrodeposited Carbon Fibers Reinforced Epoxy Composites Using Fragmentation Technique and Acoustic Emission

  • Yeong-Min Kim;Joung-Man Park;Ki-Won Kim;Dong-Jin Yoon
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.28-31
    • /
    • 1999
  • Carbon fiber/epoxy composites using electrodeposited monomeric and polymeric coupling agents were compared with the dipping and the untreated cases. Treating conditions such as time, concentration and temperature were optimized. Four-fibers embedded micro-composites were prepared for fragmentation test. Interfacial properties of four-fiber composites with different surface treatments were investigated with simultaneous acoustic emission (AE) monitoring. The microfailure mechanisms occurring from fiber break, matrix and interlayer crackings were examined by AE parameters and an optical microscope. It was found that interfacial shear strength (IFSS) of electrodeposited carbon fibers was much higher than the other cases under dry and wet conditions. Well separated and different-shaped AE groups occurs for the untreated and ED treated case, respectively.

  • PDF