• Title/Summary/Keyword: monocrotaline

Search Result 23, Processing Time 0.017 seconds

Loss of RAR-α and RXR-α and enhanced caspase-3-dependent apoptosis in N-acetyl-p-aminophenol-induced liver injury in mice is tissue factor dependent

  • Abdel-Bakky, Mohamed Sadek;Helal, Gouda Kamel;El-Sayed, El-Sayed Mohamed;Amin, Elham;Alqasoumi, Abdulmajeed;Alhowail, Ahmad;Abdelmoti, Eman Sayed Said;Saad, Ahmed Saad
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.385-393
    • /
    • 2021
  • Tissue factor (TF) activates the coagulation system and has an important role in the pathogenesis of various diseases. Our previous study stated that retinoid receptors (RAR-α and RXR-α) are released as a lipid droplet in monocrotaline/lipopolysaccharide-induced idiosyncratic liver toxicity in mice. Herein, the interdependence between the release of retinoid receptors RAR-α and RXR-α and TF in N-acetyl-p-aminophenol (APAP)-induced mice liver toxicity, is investigated. Serum alanine transaminase (ALT) level, platelet and white blood cells (WBCs) counts, protein expression of fibrin, TF, cyclin D1 and cleaved caspase-3 in liver tissues are analyzed. In addition, histopathological evaluation and survival study are also performed. The results indicate that using of TF-antisense (TF-AS) deoxyoligonucleotide (ODN) injection (6 mg/kg), to block TF protein synthesis, significantly restores the elevated level of ALT and WBCs and corrects thrombocytopenia in mice injected with APAP. TF-AS prevents the peri-central overexpression of liver TF, fibrin, cyclin D1 and cleaved caspase-3. The release of RXR-α and RAR-α droplets, in APAP treated sections, is inhibited upon treatment with TF-AS. In conclusion, the above findings designate that the released RXR-α and RAR-α in APAP liver toxicity is TF dependent. Additionally, the enhancement of cyclin D1 to caspase-3-dependent apoptosis can be prevented by blocking of TF protein synthesis.

Changes in the Lung after Pulmonary Hypertension Induced by Obstruction of the Pulmonary Vein in Rats (흰쥐에서 폐정맥 폐쇄에 의해 유도된 폐동맥고혈압 발생 후의 폐장의 변화)

  • Jang Won-Chae;Jeong In-Suk;Cho Kyu-Sung;Oh Bong-Suk
    • Journal of Chest Surgery
    • /
    • v.39 no.9 s.266
    • /
    • pp.659-667
    • /
    • 2006
  • Background: Experimental studies of vascular remodeling in the pulmonary arteries have been performed actively. These models required a persistent vascular insult for intimal injury induced by chronic hypoxia, monocrotaline intoxication or chronic air embolism and characterized medial hypertrophy and neointimal formation by active synthesis of the extracellular matrix protein. The purpose of this study was to determine the pattern of pulmonary vascular remodeling after obstruction of the pulmonary vein. Material and Method: Obstruction of the right pulmonary vein with a metal clip was performed in Sprague-Dawley rats $(352{\pm}18g,\;n=10)$ to cause pulmonary vascular disease. Fifteen days later, experimental studies were done and finally the both lungs and hearts were extirpated for experimental measurement. Pulmonary arterial pressure, weight ratio of right ventricle (RV) to left ventricle (LV) and ventricular septum (S) (RV/LV +S weight ratio), and pulmonary artery morphology (percent wall thickness, %WT) were evaluated and compared with normal control groups. Result: Pulmonary hypertension $(38{\pm}12mmHg\;vs\;13{\pm}4mmHg;\;p<0.05)$ and right ventricular hypertrophy (right ventricular/left ventricular and septal weight ratio, $0.52{\pm}0.07\;vs\;0.35{\pm}0.04;\;p<0.05$) with hypertrophy of the muscular layer of the pulmonary arterial wall (percent wall thickness, $22.4{\pm}6.7%\;vs\;6.7{\pm}3.4%;\;p<0.05$) were developed by 15 days after obstruction of the pulmonary vein. Conclusion: Obstruction of the pulmonary vein developed elevation of pulmonary blood pressure and medial hypertrophy of the pulmonary artery. These results are a part of the characteristic vascular remodeling. Theses results demonstrate that obstruction of the pulmonary vein can develope not only high pulmoanry blood flow of contralateral lung but also intima injury inducing vascular remodeling.

Decreased inward rectifier and voltage-gated K+ currents of the right septal coronary artery smooth muscle cells in pulmonary arterial hypertensive rats

  • Kim, Sung Eun;Yin, Ming Zhe;Kim, Hae Jin;Vorn, Rany;Yoo, Hae Young;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.111-119
    • /
    • 2020
  • In vascular smooth muscle, K+ channels, such as voltage-gated K+ channels (Kv), inward-rectifier K+ channels (Kir), and big-conductance Ca2+-activated K+ channels (BKCa), establish a hyperpolarized membrane potential and counterbalance the depolarizing vasoactive stimuli. Additionally, Kir mediates endothelium-dependent hyperpolarization and the active hyperemia response in various vessels, including the coronary artery. Pulmonary arterial hypertension (PAH) induces right ventricular hypertrophy (RVH), thereby elevating the risk of ischemia and right heart failure. Here, using the whole-cell patch-clamp technique, we compared Kv and Kir current densities (IKv and IKir) in the left (LCSMCs), right (RCSMCs), and septal branches of coronary smooth muscle cells (SCSMCs) from control and monocrotaline (MCT)-induced PAH rats exhibiting RVH. In control rats, (1) IKv was larger in RCSMCs than that in SCSMCs and LCSMCs, (2) IKv inactivation occurred at more negative voltages in SCSMCs than those in RCSMCs and LCSMCs, (3) IKir was smaller in SCSMCs than that in RCSMCs and LCSMCs, and (4) IBKCa did not differ between branches. Moreover, in PAH rats, IKir and IKv decreased in SCSMCs, but not in RCSMCs or LCSMCs, and IBKCa did not change in any of the branches. These results demonstrated that SCSMC-specific decreases in IKv and IKir occur in an MCT-induced PAH model, thereby offering insights into the potential pathophysiological implications of coronary blood flow regulation in right heart disease. Furthermore, the relatively smaller IKir in SCSMCs suggested a less effective vasodilatory response in the septal region to the moderate increase in extracellular K+ concentration under increased activity of the myocardium.