• 제목/요약/키워드: monocotyledonous plant

검색결과 23건 처리시간 0.03초

Tomato Yellow Leaf Curl Virus Infection in a Monocotyledonous Weed (Eleusine indica)

  • Kil, Eui-Joon;Byun, Hee-Seong;Hwang, Hyunsik;Lee, Kyeong-Yeoll;Choi, Hong-Soo;Kim, Chang-Seok;Lee, Sukchan
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.641-651
    • /
    • 2021
  • Tomato yellow leaf curl virus (TYLCV) is one of the most important plant viruses belonging to the genus Begomovirus of the family Geminiviridae. To identify natural weed hosts that could act as reservoirs of TYLCV, 100 samples were collected at a TYLCV-affected tomato farm in Iksan from 2013 to 2014. The sample weeds were identified as belonging to 40 species from 18 families. TYLCV was detected in 57 samples belonging to 28 species through polymerase chain reaction using root samples including five species (Eleusine indica, Digitaria ciliaris, Echinochloa crus-galli, Panicum dichotomiflorum, and Setaria faberi) from the family Poaceae. Whitefly Bemisia tabaci-mediated TYLCV transmission from TYLCV-infected E. indica plants to healthy tomatoes was confirmed, and inoculated tomatoes showed typical symptoms, such as leaf curling and yellowing. In addition, TYLCV was detected in leaf and root samples of E. indica plants inoculated by both whitefly-mediated transmission using TYLCV-viruliferous whitefly and agro-inoculation using a TYLCV infectious clone. The majority of mastreviruses infect monocotyledonous plants, but there have also been reports of mastreviruses that can infect dicotyledonous plants, such as the chickpea chlorotic dwarf virus. No exception was reported among begomoviruses known as infecting dicots only. This is the first report of TYLCV as a member of the genus Begomovirus infecting monocotyledonous plants.

Plastid Transformation in the Monocotyledonous Cereal Crop, Rice (Oryza sativa) and Transmission of Transgenes to Their Progeny

  • Lee, Sa Mi;Kang, Kyungsu;Chung, Hyunsup;Yoo, Soon Hee;Ming Xu, Xiang;Lee, Seung-Bum;Cheong, Jong-Joo;Daniell, Henry;Kim, Minkyun
    • Molecules and Cells
    • /
    • 제21권3호
    • /
    • pp.401-410
    • /
    • 2006
  • The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastidexpressed green fluorescent protein (GFP) and aminoglycoside 3′-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.

Vascular plants of Poaceae (II) new to Korea: Holcus mollis L. and Aira elegantissima Schur

  • Cho, Yanghoon;Kim, Jonghwan;Lee, Byoungyoon
    • Journal of Species Research
    • /
    • 제6권2호
    • /
    • pp.171-176
    • /
    • 2017
  • Recent herbarium reexamination and field studies yielded two monocotyledonous plant taxa of the family Poaceae that could be documented in the national inventory list of species of Korea. These species, collected from Jeollabuk-do and Gyeongsangnam-do, were introduced and naturalized in Korea. Two species were identified as Holcus mollis L. and Aira elegantissima Schur. We provided the descriptions and descriptive photos of these species. Keys to the newly recorded species and related taxa were also provided.

Effect of nitrogen sources and 2, 4-D treatment on indirect regeneration of ginger (Zingiber officinale Rosc.) using leaf base explants

  • Mehaboob, Valiyaparambath Musfir;Faizal, Kunnampalli;Raja, Palusamy;Thiagu, Ganesan;Aslam, Abubakker;Shajahan, Appakan
    • Journal of Plant Biotechnology
    • /
    • 제46권1호
    • /
    • pp.17-21
    • /
    • 2019
  • Ginger is an important monocotyledonous plant belonging to the family Zingiberaceae. The objective of this study was to investigate the regeneration potential of ginger using leaf base explants. Auxins such as 2, 4-D and NAA in combination with BA were used for initiation of callus. Different combinations of both ammonium ($NH^{4+}$) and nitrate ($NO^{3-}$) were also studied for efficient callus production. High frequency of white friable calli was observed on modified Murashige and Skoog (MS) medium supplemented with 2.0 mg/L 2, 4-D, 0.5 mg/L NAA and 0.5 mg/L BA. The highest shoot induction (92.33%), shootlets number ($7.33{\pm}0.33$) and length ($88.33{\pm}4.40$) mm were achieved on MS media containing 0.5 mg/L BA. Regenerated shoots were transferred to in vitro rooting media containing 1.0 mg/L IBA. Afterwards, plantlets with well-developed root and shoot system were subjected to a twostep hardening process. 71% of plantlets survived after secondary hardening without any abnormal morphology.

벼 Brassinosteroid Insensitive 1 Receptor Kinase의 기능에 관한 연구 (Functional analysis of the rice BRI1 receptor kinase)

  • 연진욱;김회택;노일섭;오만호
    • Journal of Plant Biotechnology
    • /
    • 제43권1호
    • /
    • pp.30-36
    • /
    • 2016
  • Brassinosteroids (BRs) are essential plant steroid hormones required for cell elongation, plant growth, development and abiotic and biotic stress tolerance. BRs are recognized by BRI1 receptor kinase that is localized in the plasma membrane, and the BRI1 protein will eventually autophosphorylate in the intracellular domain and transphosphorylate BAK1, which is a co-receptor in Arabidopsis thaliana. However, little is known of the role OsBRI1 receptor kinase plays in Oryza sativa, monocotyledonous plants, compared to that in Arabidopsis thaliana, dicotyledonous plants. As such, we have studied OsBRI1 receptor kinase in vitro and in vivo with recombinant protein and transgenic plants, whose phenotypes were also investigated. A OsBRI1 cytoplasmic domain (CD) recombinant protein was induced in BL21 (DE3) E.coli cells with IPTG, and purified to obtain OsBRI1 recombinant protein. Based on Western blot analysis with phospho-specific pTyr and pThr antibodies, OsBRI1 recombinant protein and OsBRI1-Flag protein were phosphorylated on Threonine residue(s), however, not on Tyrosine residue(s), both in vitro and in vivo. This is particularly intriguing as AtBRI1 protein was phosphorylated on both Ser/Thr and Tyr residues. Also, the OsBRI1 full-length gene was expressed in, and rescued, bri1-5 mutants, such as is seen in normal wild-type plants where AtBRI1-Flag rescues bri1-5 mutant plants. Root growth in seedlings decreased in Ws2, AtBRI1, and 3 independent OsBRI1 transgenic seedlings and had an almost complete lack of response to brassinolide in the bri1-5 mutant. In conclusion, OsBRI1, an orthologous gene of AtBRI1, can mediate normal BR signaling for plant growth and development in Arabidopsis thaliana.

애기장대에서의 벼 유래의 고친화성 인산 운반체 유전자들의 기능 분석 (Functional Analysis of the High Affinity Phosphate Transporter Genes Derived from Oryza sativa in Arabidopsis thaliana.)

  • 서현미;정윤희;김윤혜;권택민;정순재;이영병;김도훈;남재성
    • 생명과학회지
    • /
    • 제18권4호
    • /
    • pp.488-493
    • /
    • 2008
  • Phosphate, a favorable phosphorous form for plant, is one of major nutrient elements for growth and development in plants. Plants exhibit various physiological and biochemical responses in reaction to phosphate starvation in order to maintain phosphate homeostasis. Of them, expression of high affinity phosphate transporter gene family and efficient uptake of phosphate via them is a major physiological process for adaption to phosphate deficient environment. Although the various genetic resources of high affinity phosphate transporter are identified recently, little is known about their functions in plant that is prerequisite information before applying to crop plants to generate valuable transgenic plants. We demonstrated that Arabidopsis transgenic plants over-expressing two different high affinity phosphate transporter gens, OsPT1 and OsPT7, derived from rice, exhibit better growth responses compared with wild-type under phosphate starvation condition. Specially, OsPT7 gene has proven to be more effective to generate Arabidopsis transgenic plant tolerant to phosphate deficiency than OsPT1. Furthermore, the expression level of AtPT1 gene that is one of reporter genes specifically induced by phosphate starvation was significantly low compared with wild-type during phosphate starvation. Taken together, these results collectively suggest that over expression of OsPTl and OsPT7 genes derived from monocotyledonous plant function efficiently in the dicotyledonous plant, relieving stress response caused by phosphate starvation and leading to better growth rate.

Cellular and Molecular Pathology of Fungi on Plants Studied by Modern Electron Microscopy

  • Sanwald, Sigrun-Hippe
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1995년도 Proceedings of special lectures on Molecular Biological Approaches to Plant Disease National Agricultural Science and Technology Institute Suwon, Korea
    • /
    • pp.27-53
    • /
    • 1995
  • In plant pathology there is an increasing necessity for improved cytological techniques as basis for the localization of cellular substances within the dynamic fine structure of the host-(plant)-pathogen-interaction. Low temperature (LT) preparation techniques (shock freezing, freeze substitution, LT embedding) are now successfully applied in plant pathology. They are regarded as important tools to stabilize the dynamic plant-pathogen-interaction as it exists under physiological conditions. - The main advantage of LT techniques versus conventional chemical fixation is seen in the maintenance of the hydration shell of molecules and macromolecular structures. This results in an improved fine structural preservation and in a superior retention of the antigenicity of proteins. - A well defined ultrastructure of small, fungal organisms and large biological samples such as plant material and as well as the plant-pathogen (fungus) infection sites are presented. The mesophyll tissue of Arabidopsis thaliana is characterized by homogeneously structured cytoplasm closely attached to the cell wall. From analyses of the compatible interaction between Erysiphe graminis f. sp. hordei on barley (Hordeum vulgare), various steps in the infection sequence can be identified. Infection sites of powdery mildew on primary leaves of barley are analysed with regard to the fine structural preservation of the haustoria. The presentation s focussed on the ultrastructure of the extrahaustorial matrix and the extrahaustorial membrane. - The integration of improved cellular preservation with a molecular analysis of the infected host cell is achieved by the application of secondary probing techniques, i.e. immunocytochemistry. Recent data on the characterization of freeze substituted powdery mildew and urst infected plant tissue by immunogold methodology are described with special emphasis on the localization of THRGP-like (threonine-hydrxyproline-rich glycoprotein) epitopes. Infection sites of powdery mildew on barley, stem rust as well as leaf rust (Puccinia recondita) on primary leaves of wheat were probed with a polyclonal antiserum to maize THRGP. Cross-reactivity with the anti-THRGP antiserum was observed over the extrahaustorial matrix of the both compatible and incompatible plant-pathogen interactions. The highly localized accumulation of THRGP-like epitopes at the extrahaustorial host-pathogen interface suggests the involvement of structural, interfacial proteins during the infection of monocotyledonous plants by obligate, biotrophic fungi.

  • PDF

Agrobacterium 이용 보리묘 형질전환에 대한 세포벽 상해물질의 효과 (Effect of Cell Wall-Wounding Reagents on Agrobacterium-mediated Barley Seedling Transformation)

  • 최장원;박희성
    • 농업생명과학연구
    • /
    • 제44권1호
    • /
    • pp.9-15
    • /
    • 2010
  • 단자엽 식물인 보리는 Agrobacterium을 이용한 형질전환이 비교적 까다로운 편이다. 본 연구에서는 큰알1호, 내쌀보리, 올보리, 새찰쌀보리, 서둔찰보리, 풍산찰쌀보리의 유묘에 알칼리, 산화제, 환원제 등을 처리하여 화학적 상처를 유발하였으며 이들에 감압진공을 이용한 Agrobacterium 형질전환을 실시한 후 GUS 유전자발현을 분석하였다. 그 결과, 보리묘 생육을 일부 저하시킬 수 있는 농도의 화학물질 처리는 각기 다른 보리 품종의 형질전환율을 전반적으로 증대시킬 수 있는 것으로 판단되었다. 화학물 중에서는 특히 hydrogen peroxide 처리가 비교적 우수한 것으로 나타났다.

Solute patterns of four halophytic plant species at Suncheon Bay in Korea

  • Choi, Sung-Chul;Choi, Deok-Gyun;Hwang, Jeong-Sook;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • 제37권3호
    • /
    • pp.131-137
    • /
    • 2014
  • To investigate the solute pattern of salt marsh plants in Suncheon Bay in Korea, plants and soil samples were collected at three sites from July to September 2011. The soil pH around the investigated species was weakly alkaline, 6.9-8.1. The total ion and Cl- content of site 1 gradually increased, while those of site 2 and site 3 were lowest in August and highest in September. The exchangeable $Ca^{2+}$, $Mg^{2+}$ and $K^+$ in the soil were relatively constant during the study period, but the soil exchangeable $Na^+$ content was variable. Carex scabrifolia and Phragmites communis had constant leaf water content and very high concentrations of soluble carbohydrates during the study period. However, Suaeda malacosperma and S. japonica had high leaf water content and constant very low soluble carbohydrate concentrations. Carex scabrifolia accumulated similar amounts of $Na^+$ and $K^+$ ions in its leaves. Phragmites communis contained a high concentration of $K^+$ ions. Suada japonica and S. malacosperma had more $Na^+$ and $Cl^-$ ions than $K^+$ ions in their leaves. Suaeda japonica had higher levels of glycine betaine in its leaves under saline conditions than C. scabrifolia and P. communis. Consequently, the physiological characteristics of salt marsh chenopodiaceous plants (S. japonica and S. malacosperma) were the high storage capacity for inorganic ions (especially alkali cations and chloride) and accumulation of glycine betaine, but monocotyledonous plant species (C. scabrifolia and P. communis) showed high $K^+$concentrations, efficient regulation of ionic uptake, and accumulation of soluble carbohydrates. These characteristics might enable salt marsh plants to grow in saline habitats.

해안 식물의 무기 및 유기용질 양상 (Inorganic and Organic Solute Pattern of Costal Plants, Korea)

  • 최성철;배정진;추연식
    • The Korean Journal of Ecology
    • /
    • 제27권6호
    • /
    • pp.355-361
    • /
    • 2004
  • 염습지와 사구지역에 생육하는 해안식물의 생리생태학적 특성을 이해하기 위하여 무기이온($Ca^{2+},\;Na^+,\;K^+,\;Mg^{2+},\;Cl^-$)과 유기용질(수용성 당, glycine betaine)을 정량적으로 측정하였다. 명아주과 식물(가는갯능쟁이, 퉁퉁마디, 솔장다리, 나문재, 칠면초)은 $K^+$이온 대신에 $Na^+$이온과 $Cl^-$이온을 축적하는 경향을 보였다. 그러나 교란지에 서식하는 좀명아주는 다른 명아주과 식물에 비해 $Na^+$이온 대신에 높은 $K^+$이온을 함유하였다. 조사된 대부분의 명아주과 식물은 체내 수용성 $Ca^{+2}$이온의 함량이 낮고, 비교적 소량의 수용성 당을 함유하였으며, glycine betaine을 다량 함유하였다. 이와는 대조적으로 단자엽에 속하는 벼과(갯쇠보리, 갈대, 갯잔디)와 사초과(통보리사초, 좀보리사초)의 식물은 $Na^+$$Cl^-$이온을 효과적으로 배제하여 체내 낮은 함량을 유지하였으며, 또한 $K^+$이온을 선호하며, 명아주과 식물보다 더 많은 당을 삼투물질로 축적하였다. 결론적으로, 명아주과식물은 무기이온과 glycine betaine을 축적하고, 단자엽식물은 $K^+$이온과 수용성 당을 축적하는 효과적인 이온조절을 통해 염습지 및 사구지역에 적응하는 것으로 여겨진다.