• Title/Summary/Keyword: monitoring techniques

Search Result 1,465, Processing Time 0.025 seconds

A Study on Classification of Crown Classes and Selection of Thinned Trees for Major Conifers Using Machine Learning Techniques (머신러닝 기법을 활용한 주요 침엽수종의 수관급 분류와 간벌목 선정 연구)

  • Lee, Yong-Kyu;Lee, Jung-Soo;Park, Jin-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.302-310
    • /
    • 2022
  • Here we aimed to classify the major coniferous tree species (Pinus densiflora, Pinus koraiensis, and Larix kaempferi) by tree measurement information and machine learning algorithms to establish an efficient forest management plan. We used national forest monitoring information amassed over nine years for the measurement information of trees, and random forest (RF), XGBoost (XGB), and light GBM (LGBM) as machine learning algorithms. We compared and evaluated the accuracy of the algorithm through performance evaluation using the accuracy, precision, recall, and F1 score of the algorithm. The RF algorithm had the highest performance evaluation score for all tree species, and highest scores for Pinus densiflora, with an accuracy of about 65%, a precision of about 72%, a recall of about 60%, and an F1 score of about 66%. The classification accuracy for the dominant trees was higher than about 80% in the crown classes, but that of the co-dominant trees, the intermediate trees, and the overtopper trees was evaluated as low. We consider that the results of this study can be used as reference data for decision-making in the selection of thinning trees for forest management.

Water Quality Assessment and Turbidity Prediction Using Multivariate Statistical Techniques: A Case Study of the Cheurfa Dam in Northwestern Algeria

  • ADDOUCHE, Amina;RIGHI, Ali;HAMRI, Mehdi Mohamed;BENGHAREZ, Zohra;ZIZI, Zahia
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.563-573
    • /
    • 2022
  • This work aimed to develop a new equation for turbidity (Turb) simulation and prediction using statistical methods based on principal component analysis (PCA) and multiple linear regression (MLR). For this purpose, water samples were collected monthly over a five year period from Cheurfa dam, an important reservoir in Northwestern Algeria, and analyzed for 12 parameters, including temperature (T°), pH, electrical conductivity (EC), turbidity (Turb), dissolved oxygen (DO), ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), phosphate (PO43-), total suspended solids (TSS), biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). The results revealed a strong mineralization of the water and low dissolved oxygen (DO) content during the summer period. High levels of TSS and Turb were recorded during rainy periods. In addition, water was charged with phosphate (PO43-) in the whole period of study. The PCA results revealed ten factors, three of which were significant (eigenvalues >1) and explained 75.5% of the total variance. The F1 and F2 factors explained 36.5% and 26.7% of the total variance, respectively and indicated anthropogenic pollution of domestic agricultural and industrial origin. The MLR turbidity simulation model exhibited a high coefficient of determination (R2 = 92.20%), indicating that 92.20% of the data variability can be explained by the model. TSS, DO, EC, NO3-, NO2-, and COD were the most significant contributing parameters (p values << 0.05) in turbidity prediction. The present study can help with decision-making on the management and monitoring of the water quality of the dam, which is the primary source of drinking water in this region.

Prediction of Beach Profile Change Using Machine Learning Technique (머신러닝을 이용한 해빈단면 변화 예측)

  • Shim, Kyu Tae;Cho, Byung Sun;Kim, Kyu Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.639-650
    • /
    • 2022
  • In areas where large-scale sediment transport occurs, it is important to apply appropriate countermeasure method because the phenomenon tends to accelerate by time duration. Among the various countermeasure methods applied so far, beach nourishment needs to be reviewed as an erosion prevention measure because the erosion pattern is mitigated and environmentally friendly depending on the particle size. In the case of beach nourishment. a detailed review is required to determine the size, range, etc., of an appropriate particle diameter. In this study, we investigated the characteristics of the related topographic change using the change in the particle size of nourishment materials, the application of partial area, and the condition under the coexistence of waves and wind as variables because those factors are hard to be analyzed and interpreted within results and limitation of that the existing numerical models are not able to calculate and result out so that it is required that phenomenon or efforts are reviewed at the same time through physical model experiments, field monitoring and etc. So we attempt to reproduce the tendency of beach erosion and deposition and predict possible phenomena in the future using machine learning techniques for phenomena that it is not able to be interpreted by numerical models. we used the hydraulic experiment results for the training data, and the accuracy of the prediction results according to the change in the training method was simultaneously analyzed. As a result of the study it was found that topographic changes using machine learning tended to be similar to those of previous studies in short-term predictions, but we also found differences in the formation of scour and sandbars.

Parallel Network Model of Abnormal Respiratory Sound Classification with Stacking Ensemble

  • Nam, Myung-woo;Choi, Young-Jin;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.21-31
    • /
    • 2021
  • As the COVID-19 pandemic rapidly changes healthcare around the globe, the need for smart healthcare that allows for remote diagnosis is increasing. The current classification of respiratory diseases cost high and requires a face-to-face visit with a skilled medical professional, thus the pandemic significantly hinders monitoring and early diagnosis. Therefore, the ability to accurately classify and diagnose respiratory sound using deep learning-based AI models is essential to modern medicine as a remote alternative to the current stethoscope. In this study, we propose a deep learning-based respiratory sound classification model using data collected from medical experts. The sound data were preprocessed with BandPassFilter, and the relevant respiratory audio features were extracted with Log-Mel Spectrogram and Mel Frequency Cepstral Coefficient (MFCC). Subsequently, a Parallel CNN network model was trained on these two inputs using stacking ensemble techniques combined with various machine learning classifiers to efficiently classify and detect abnormal respiratory sounds with high accuracy. The model proposed in this paper classified abnormal respiratory sounds with an accuracy of 96.9%, which is approximately 6.1% higher than the classification accuracy of baseline model.

ECG Compression and Transmission based on Template Matching (템플릿 매칭 기반의 심전도 압축 전송)

  • Lee, Sang-jin;Kim, Sang-kon;Kim, Tae-kon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • An electrocardiogram(ECG) is a recoding of electrical signals of the heart's cyclic activity and an important body information for diagnosing myocardial rhythm. Large amount of information are generated continuously and a significant period of cumulative signal is required for the purpose of diagnosing a specific disease. Therefore, research on compression including clinically acceptable lossy technique has been developed to reduce the amount of information significantly. Recently, wearable smart heart monitoring devices that can transmit electrocardiogram(ECG) are being developed. The use of electrocardiogram, an important personal information for healthcare service, is rapidly increasing. However, devices generally have limited capability and power consumption for user convenience, and it is often difficult to apply the existing compression method directly. It is essential to develop techniques that can process and transmit a large volume of signals in limited resources. A method for compressing and transmitting the ECG signals efficiently by using the cumulative average (template) of the unit waveform is proposed in the paper. The ECG is coded lovelessly using template matching. It is analyzed that the proposed method is superior to the existing compression methods at high compression ratio, and its complexity is not relatively high. And it is also possible to apply compression methods to template matching values.

Development of an Intelligent Illegal Gambling Site Detection Model Based on Tag2Vec (Tag2vec 기반의 지능형 불법 도박 사이트 탐지 모형 개발)

  • Song, ChanWoo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.211-227
    • /
    • 2022
  • Illegal gambling through online gambling sites has become a significant social problem. The development of Internet technology and the spread of smartphones have led to the proliferation of illegal gambling sites, so now illegal online gambling has become accessible to anyone. In order to mitigate its negative effect, the Korean government is trying to detect illegal gambling sites by using self-monitoring agents or reporting systems such as 'Nuricops.' However, it is difficult to detect all illegal sites due to limitations such as a lack of staffing. Accordingly, several scholars have proposed intelligent illegal gambling site detection techniques. Xu et al. (2019) found that fake or illegal websites generally have unique features in the HTML tag structure. It implies that the HTML tag structure can be important for detecting illegal sites. However, prior studies to improve the model's performance by utilizing the HTML tag structure in the illegal site detection model are rare. Against this background, our study aimed to improve the model's performance by utilizing the HTML tag structure and proposes Tag2Vec, a modified version of Doc2Vec, as a methodology to vectorize the HTML tag structure properly. To validate the proposed model, we perform the empirical analysis using a data set consisting of the list of harmful sites from 'The Cheat' and normal sites through Google search. As a result, it was confirmed that the Tag2Vec-based detection model proposed in this study showed better classification accuracy, recall, and F1_Score than the URL-based detection model-a comparative model. The proposed model of this study is expected to be effectively utilized to improve the health of our society through intelligent technology.

Effects of Dynamic Compression to Listening Monitor on Vocal Recording (보컬 녹음에서 모니터에 적용된 컴프레서가 가창에 미치는 영향)

  • Kim, Si-On;Park, Jae-Rock
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2019
  • Dynamic Compressors in vocal recordings of modern pop music are essential equipment. Dynamic compressors are applied not only to the mix for listening to music but also to the monitor for the singer to listen to his voice along with the accompaniment while the singer is recording. This study is an experimental study on the effects of a dynamic compressor applied to a monitor environment on the vocal performance of a singer. 10 participating singers participated in the blind test to test how the vocals heard through the monitor would be affected by the 1:1, 2:1 and 4:1 compression ratio. Experimental results show that the higher the compression ratio applied to the monitor, the bigger the song, the brighter the tone, but the pitch becomes finer inaccuracy on the bigger dynamic part of the song. In post-interviews with blinds, it was found that singers generally preferred to hear compressed sound through a compressor on the monitor. Since the music used in the experiment was a ballad with a wide dynamic range, it could not be generalized to all kind of music recordings, but it could provide important implications for the monitoring of recording sites. In addition, We hope that the cognitive science approach to recording technology will be added based on this paper which has been studied through empirical studies on the effect of the monitor environment on the singing voice.

Tunnel-lining Back Analysis Based on Artificial Neural Network for Characterizing Seepage and Rock Mass Load (투수 및 이완하중 파악을 위한 터널 라이닝의 인공신경망 역해석)

  • Kong, Jung-Sik;Choi, Joon-Woo;Park, Hyun-Il;Nam, Seok-Woo;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.107-118
    • /
    • 2006
  • Among a variety of influencing components, time-variant seepage and long-term underground motion are important to understand the abnormal behavior of tunnels. Excessiveness of these two components could be the direct cause of severe damage on tunnels, however, it is not easy to quantify the effect of these on the behavior of tunnels. These parameters can be estimated by using inverse methods once the appropriate relationship between inputs and results is clarified. Various inverse methods or parameter estimation techniques such as artificial neural network and least square method can be used depending on the characteristics of given problems. Numerical analyses, experiments, or monitoring results are frequently used to prepare a set of inputs and results to establish the back analysis models. In this study, a back analysis method has been developed to estimate geotechnically hard-to-known parameters such as permeability of tunnel filter, underground water table, long-term rock mass load, size of damaged zone associated with seepage and long-term underground motion. The artificial neural network technique is adopted and the numerical models developed in the first part are used to prepare a set of data for learning process. Tunnel behavior, especially the displacements of the lining, has been exclusively investigated for the back analysis.

Development of Flow Loop System to Evaluate the Performance of ESP in Unconventional Oil and Gas Wells (비전통 유·가스정에서 ESP 성능 평가를 위한 Flow Loop 시스템 개발)

  • Sung-Jea Lee;Jun-Ho Choi;Jeong-Hwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.7-15
    • /
    • 2023
  • The electric submersible pump (ESP) has been operating in production wells around the world because of its high applicability and operational efficiency among artificial lift techniques. When operating an ESP in a reservoir, variables such as temperature, pressure, gas/oil ratio, and flow rate are factors that affect ESP performance. In particular, free gas in the production fluid is a major factor that reduces the life and operational efficiency of ESP. This study presents the flow loop system which can implement the performance and damage tests of ESP considering field operating conditions to quantitatively analyze the variables that affect ESP performance. The developed apparatus in an integrated system that can diagnose the failure and causes of ESP, and detect leak of tubing by linking ESP and tubing as one system. In this study, the flow conditions for stable operation of ESP were identified through single phase and two phase flow experiments related to evaluation for the performance of ESP. The results provide the basic data to develop the failure prediction and diagnosis program of ESP, and are expected to be used for real-time monitoring for optimal operating conditions and failure diagnosis for ESP operation.

Market in Medical Devices of Blockchain-Based IoT and Recent Cyberattacks

  • Shih-Shuan WANG;Hung-Pu (Hong-fu) CHOU;Aleksander IZEMSKI ;Alexandru DINU;Eugen-Silviu VRAJITORU;Zsolt TOTH;Mircea BOSCOIANU
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.39-44
    • /
    • 2023
  • The creativity of thesis is that the significance of cyber security challenges in blockchain. The variety of enterprises, including those in the medical market, are the targets of cyberattacks. Hospitals and clinics are only two examples of medical facilities that are easy targets for cybercriminals, along with IoT-based medical devices like pacemakers. Cyberattacks in the medical field not only put patients' lives in danger but also have the potential to expose private and sensitive information. Reviewing and looking at the present and historical flaws and vulnerabilities in the blockchain-based IoT and medical institutions' equipment is crucial as they are sensitive, relevant, and of a medical character. This study aims to investigate recent and current weaknesses in medical equipment, of blockchain-based IoT, and institutions. Medical security systems are becoming increasingly crucial in blockchain-based IoT medical devices and digital adoption more broadly. It is gaining importance as a standalone medical device. Currently the use of software in medical market is growing exponentially and many countries have already set guidelines for quality control. The achievements of the thesis are medical equipment of blockchain-based IoT no longer exist in a vacuum, thanks to technical improvements and the emergence of electronic health records (EHRs). Increased EHR use among providers, as well as the demand for integration and connection technologies to improve clinical workflow, patient care solutions, and overall hospital operations, will fuel significant growth in the blockchain-based IoT market for linked medical devices. The need for blockchain technology and IoT-based medical device to enhance their health IT infrastructure and design and development techniques will only get louder in the future. Blockchain technology will be essential in the future of cybersecurity, because blockchain technology can be significantly improved with the cybersecurity adoption of IoT devices, i.e., via remote monitoring, reducing waiting time for emergency rooms, track assets, etc. This paper sheds the light on the benefits of the blockchain-based IoT market.