• Title/Summary/Keyword: monitoring techniques

Search Result 1,465, Processing Time 0.033 seconds

Application of smart piezoelectric transducers to structural health monitoring (구조물 건전성 감시를 위한 스마트 PZT센서의 적용성 연구)

  • Park, Seung-Hee;Yi, Jin-Hak;Lee, Jong-Jae;Yun, Chung-Bang;Noh, Yong-Rae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.549-555
    • /
    • 2003
  • The objective of かis study is to investigate the feasibility of piezoelectric transducers as a damage detection system for civil infrastructures. There have been considerable amount of efforts by the modal analysis community to localize damage and evaluate its severity without looking at a reliable way to excite the structure. The detection of damages by modal analysis and similar vibration techniques depends upon the knowledge and estimation of various modal parameters. In addition to the associated difficulties, such low-frequency dynamic response based techniques fail to detect incipient damages. Smart piezoelectric ceramic (PZT) transducers which act as both actuators and sensors in a self-analyzing manner are emerging to be effective in non-parametric health monitoring of structural systems. In this paper, we present the results of an experimental study for the detection of damages using smart PZT transducers on the steel plate. The method of extracting the impedance characteristics of the PZT transducer, which is electro-mechanically coupled to the host structure, is adopted for damage detection. Two damages are simulated and assessed by the bonded PZT transducers for characterization. The experimental results verified the efficacy of the proposed approach and provided a demonstration of good robustness at the realistic steel structures, emphasizing the great potential for developing an automated in situ structural health monitoring system for application to large civil infrastructures without the need to blow the modal parameters.

  • PDF

Damage detction and characterization using EMI technique under varying axial load

  • Lim, Yee Yan;Soh, Chee Kiong
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.349-364
    • /
    • 2013
  • Recently, researchers in the field of structural health monitoring (SHM) have been rigorously striving to replace the conventional NDE techniques with the smart material based SHM techniques, employing smart materials such as piezoelectric materials. For instance, the electromechanical impedance (EMI) technique employing piezo-impedance (lead zirconate titanate, PZT) transducer is known for its sensitivity in detecting local damage. For practical applications, various external factors such as fluctuations of temperature and loading, affecting the effectiveness of the EMI technique ought to be understood and compensated. This paper aims at investigating the damage monitoring capability of EMI technique in the presence of axial stress with fixed boundary condition. A compensation technique using effective frequency shift (EFS) by cross-correlation analysis was incorporated to compensate the effect of loading and boundary stiffening. Experimental tests were conducted by inducing damages on lab-sized aluminium beams in the presence of tensile and compressive forces. Two types of damages, crack propagation and bolts loosening were simulated. With EFS for compensation, both cross-correlation coefficient (CC) index and reduction in peak frequency were found to be efficient in characterizing damages in the presence of varying axial loading.

Performance Evaluation of SHF Sensor for Partial Discharge Signal Detection on DC Rectifier (DC 정류기 부분방전 신호검출을 위한 SHF 센서의 성능평가)

  • Jung, Ho-Sung;Park, Young;Na, Hee-Seung;Jang, Soon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1056-1060
    • /
    • 2012
  • Online monitoring system is becoming an essential element of railway traction system for utilized to condition based malignance management and various techniques currently employed in railway traction system. Among the various techniques, it is efficient to detect partial discharge signals by electromagnetic wave detection in order to detect insulation fault of rectifier. Although VHF (Very High Frequency), UHF (Ultra High Frequency) sensors were adopted to detect partial discharge of power facilities, due to characteristics of urban railway, excessive noise occurs from 500 MHz to 1.5 GHz on UHF bandwidth. In this paper a new measurement system able to monitoring the conditions of power facilities on DC substation in metro was studied and set up. The system uses UHF sensors to measure the partial discharge of the rectifier due to electric faulting and dielectric breakdown. Comparison and estimation for performance of SHF sensor which had devised to detect partial discharge signal of urban railway rectifier has conducted. In order to estimate performance of SHF sensor, we have compared the sensor with existing UHF sensor on sensitivity upon frequency bandwidth generated by pulse generator, and also we have verified performance of the SHF sensor by detection results of partial discharge signal from urban railway rectifier.

An Empirical Comparison of Monitoring Filtering Techniques for Dynamic Data Race Detection in Parallel Programs with OpenMP Directives (OpenMP 디렉티브 병렬프로그램에서의 동적 자료경합 탐지를 위한 감시 필터링 기술의 실험적 비교)

  • Cho, Ahra;Ha, Ok-Kyoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.1-2
    • /
    • 2016
  • 다중 스레드 기반 병렬 프로그램에서의 자료경합 탐지는 동시에 수행되는 스레드 간의 비결정적인 상호작용 때문에 탐지하기 어려운 것으로 잘 알려져 있다. 동적 분석기술을 사용하여 자료경합을 탐지할 경우 프로그램 수행의 감시와 충돌하는 모든 메모리 연산의 분석을 위해 추가적인 오버헤드가 발생한다는 단점이 있다. 이러한 동적 분석의 추가적인 오버헤드를 줄이는 방법으로 감시 필터링 기술이 소개되고 있으며, 본 논문에서는 동적 자료경합 탐지를 위한 감시 필터링 기술 중 OpenMP 디렉티브 병렬 프로그램에 적용 가능한 두 기술을 대상으로 실용성과 효율성을 실험적으로 비교한다.

  • PDF

Recent Developments Involving the Application of Infrared Thermal Imaging in Agriculture

  • Lee, Jun-Soo;Hong, Gwang-Wook;Shin, Kyeongho;Jung, Dongsoo;Kim, Joo-Hyung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.280-293
    • /
    • 2018
  • The conversion of an invisible thermal radiation pattern of an object into a visible image using infrared (IR) thermal technology is very useful to understand phenomena what we are interested in. Although IR thermal images were originally developed for military and space applications, they are currently employed to determine thermal properties and heat features in various applications, such as the non-destructive evaluation of industrial equipment, power plants, electricity, military or drive-assisted night vision, and medical applications to monitor heat generation or loss. Recently, IR imaging-based monitoring systems have been considered for application in agricultural, including crop care, plant-disease detection, bruise detection of fruits, and the evaluation of fruit maturity. This paper reviews recent progress in the development of IR thermal imaging techniques and suggests possible applications of thermal imaging techniques in agriculture.

Radiation level distribution monitoring system (방사선 분포 모니터링 시스템)

  • 최영수;박순용;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.828-831
    • /
    • 1996
  • Radiation monitoring system is needed at nuclear power plant and nuclear facility. Manual survey techniques are commonly used, but they are time consuming and somewhat inaccurate. Automatic radiation surveys are very important because it provides significant savings in men-rem and wages. Unmanned, remote automatic radiation measurement system should be small and light-weighted in order to mount on robotic system. The system we have developed consists of detection parts, signal processing part, interface, and software part. Position information is provided by using of a collimator. The measurement process is achieved by the scanning of detector and image processing techniques are used to display radiation levels. We designed collimators, detectors, signal processing circuit, and constructed prototype system. The goal of this system is the mapping of camera image and radiation level distribution.

  • PDF

Data Processing of earthquake data from KEPRI seismic monitoring system (전력연구원 지진관측망 계측지진 분석을 사전자료 처리)

  • 연관희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.58-65
    • /
    • 2001
  • It is essential to know exactly what the response of the seismograph is inclusive of characteristic of the seismic sensors before using it for detailed seismic study. This is because the recorded earthquake data can be more or less affected by the overall system and need to be corrected properly to the analysis`s best to obtain the right results. In this respect, two basic earthquake data processing techniques are introduced and applied, for validation purpose, to real data from KEPRI seismic monitoring system which were established for determining the site-specific characteristics of the earthquakes around the Nuclear Power Plants. One is conventional instrumental correction technique for velocity data and the other is for removing acausal ringing originate from using linear phase FIR filter. These techniques are all implemented in the time domain using digital filtering process and shows the desired results when applied to real earthquake data.

  • PDF

Analysis and development of measurement systems for tunnels and slopes under a high velocity (고속주행을 고려한 터널 및 사면의 계측시스템 분석 및 개선 방안 연구)

  • Chung, Jae-Hoon;Park, Yoon-Je;Lee, Rae-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1376-1381
    • /
    • 2010
  • In this study, we dealt with an analysis and development of measurement systems for tunnel and slope structures under a high velocity. Deterioration of tunnel and slope structures becomes a critical issue in regard to both safety and economic concerns. Deterioration itself is inevitable, but condition assessment technology and nondestructive evaluation techniques could provide solutions to ensure public safety by means of detecting damage before serious and expensive degradation consequences occur. We reviewed the existing monitoring and maintenance systems of slopes and tunnels and more advanced directions, especially for highways under high-speed vehicles.

  • PDF

Cardiovascular Molecular Imaging (심장 분자영상)

  • Lee, Kyung-Han
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.229-239
    • /
    • 2009
  • Molecular imaging strives to visualize processes in living subjects at the molecular level. Monitoring biochemical processes at this level will allow us to directly track biological processes and signaling events that lead to pathophysiological abnormalities, and help make personalized medicine a reality by allowing evaluation of therapeutic efficacies on an individual basis. Although most molecular imaging techniques emerged from the field of oncology, they have now gradually gained acceptance by the cardiovascular community. Hence, the availability of dedicated high-resolution small animal imaging systems and specific targeting imaging probes is now enhancing our understanding of cardiovascular diseases and expediting the development of newer therapies. Examples include imaging approaches to evaluate and track the progress of recent genetic and cellular therapies for treatment of myocardial ischemia. Other areas include in vivo monitoring of such key molecular processes as angiogenesis and apoptosis, Cardiovascular molecular imaging is already an important research tool in preclinical experiments. The challenge that lies ahead is to implement these techniques into the clinics so that they may help fulfill the promise of molecular therapies and personalized medicine, as well as to resolve disappointments and controversies surrounding the field.

Design of Minimum and Maximum Control Charts under Weibull Distribution (와이블분포하에서의 최소값 및 최대값 관리도의 설계)

  • Jo, Eun-Kyung;Lee, Minkoo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.6
    • /
    • pp.521-529
    • /
    • 2015
  • Statistical process control techniques have been greatly implemented in industries for improving product quality and saving production costs. As a primary tool among these techniques, control charts are widely used to detect the occurrence of assignable causes. In most works on the control charts it considered the problem of monitoring the mean and variance, and the quality characteristic of interest is normally distributed. In some situations monitoring of the minimum and maximum values is more important and the quality characteristic of interest is the Weibull distribution rather than a normal distribution. In this paper, we consider the statistical design of minimum and maximum control charts when the distribution of the quality characteristic of interest is Weibull. The proposed minimum and maximum control charts are applied to the wind data. The results of the application show that the proposed method is more effective than traditional methods.