• Title/Summary/Keyword: monitoring results

Search Result 8,898, Processing Time 0.042 seconds

다층퍼셉트론을 이용한 절삭칩 형상과 채터검출에 관한 연구

  • 박동삼
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.293-297
    • /
    • 1992
  • For the computerized monitoring and diagnosis of the undesirable chip chatter which are major obstacles to FMS, a pattern recognition system based on multi-layer perception neural network is developed and the performance of the system is experimentally evaluated. Experimental results show that recognition of the two class state of normal or abnormal cutting gives satisfactory results with success rate of 81`91%. Therefore, the proposed system has possibility for use in monitoring and diagnosis of automatic manufacturing system

System Construction for Monitoring characteristic of LIM (유도형 리니어 모터의 특성 모니터링 시스템 구현)

  • Jang, Seok-Myeong;Lee, Sung-Lae;Lee, Sung-Ho;Park, Young-Tae;Park, Chan-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.52-54
    • /
    • 1999
  • This paper presents the results of monitoring for measuring characteristics of Linear induction motor. The results is divided into three parts, that is part for electrical quantity caculation, thrust caculation and speed decting part. Also, for the purpose of measuring the characteristics of LIM, LabVIEW software is used.

  • PDF

Monitoring System of Moving Coil Type LOA (가동코일형 LOA의 모니터링 시스템)

  • Jang, S.M.;Jeong, S.S.;Lee, S.H.;Kweon, C.;Chang, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.284-286
    • /
    • 2000
  • This paper presents the results of monitoring for measuring characteristics of Linear Oscillatory Actuator we used LabVIEW software. The results is divided into two parts, thats is part for electrical quantity calculation, mechanical quantify calculation detecting part.

  • PDF

Parameter Measurement and Torque Monitoring System for Induction Motors (유도전동기의 매개변수 측정과 토크 모니터링 시스템)

  • Kim Jin-woo;Kim Gyu-Sik;Kwon Won-Tae;Park Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.131-134
    • /
    • 2001
  • The accurate identification of the motor parameters is crucially important to achieve high dynamic performance of induction motors. In this paper, the motor parameters such as rotor resistance, stator(rotor) leakage inductance, mutual inductance are measured for torque monitoring and indirect vector control. To demonstrate the practical significance of the results, some experimental results are presented.

  • PDF

Application of numerical simulation of submersed rock-berm structure under anchor collision for structural health monitoring of submarine power cables

  • Woo, Jinho;Kim, Dongha;Na, Won-Bae
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.299-314
    • /
    • 2015
  • Submersed rock-berm structures are frequently used for protection of underwater lifelines such as pipelines and power cables. During the service life, the rock-berm structure can experience several accidental loads such as anchor collision. The consequences can be severe with a certain level of frequency; hence, the structural responses should be carefully understood for implementing a proper structural health monitoring method. However, no study has been made to quantify the structural responses because it is hard to deal with the individual behavior of each rock. Therefore, this study presents a collision analysis of the submersed rock-berm structure using a finite element software package by facilitating the smoothed-particle hydrodynamics (SPH) method. The analysis results were compared with those obtained from the Lagrange method. Moreover, two types of anchors (stock anchor and stockless anchor), three collision points and two different drop velocities (terminal velocity of each anchor and 5 m/s) were selected to investigate the changes in the responses. Finally, the effect of these parameters (analysis method, anchor type, collision point and drop velocity) on the analysis results was studied. Accordingly, the effectiveness of the SPH method is verified, a safe rock-berm height (over 1 m) is proposed, and a gauge point (0.5 m above the seabed) is suggested for a structural health monitoring implementation.

A Trip Coil Fault Detection of Circuit Breaker (차단기 트립코일 이상감지 장치)

  • Youn, Ju-Houc;Lee, Jong-Hun;Park, Noh-Sik;Lee, Dong-Hea
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.61-68
    • /
    • 2011
  • The circuit breaker of power distribution board is essential part for the protection of electrical disaster from load short, trouble of power system. For the normal operation of circuit breaker, trip coil of the circuit breaker can cut the mechanical contact of circuit breaker from the detection of power system troubles. This paper presents a design and experimental results of trip coil fault detection system for the real time monitoring of the circuit breaker. The designed system is consisted by the trip coil fault detector which is connected to the each circuit breaker and remote monitoring unit. The trip coil fault detector can detect the impedance and operating voltage of the trip coil, and the detected values are compared with the normal state. And the remote monitoring unit can be connected to the 32 channels of trip coil fault detectors by serial communication. From the designed system, the fault and normal states of the trip coil can be remotely monitored in real time. The designed system is verified by the practical circuit breaker of power distribution board. And the results shows the effectiveness of the designed system.

Long-Term Monitoring and Analysis of a Curved Concrete Box-Girder Bridge

  • Lee, Sung-Chil;Feng, Maria Q.;Hong, Seok-Hee;Chung, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • Curved bridges are important components of a highway transportation network for connecting local roads and highways, but very few data have been collected in terms of their field performance. This paper presents two-years monitoring and system identification results of a curved concrete box-girder bridge, the West St. On-Ramp, under ambient traffic excitations. The authors permanently installed accelerometers on the bridge from the beginning of the bridge life. From the ambient vibration data sets collected over the two years, the element stiffness correction factors for the columns, the girder, and boundary springs were identified using the back-propagation neural network. The results showed that the element stiffness values were nearly 10% different from the initial design values. It was also observed that the traffic conditions heavily influence the dynamic characteristics of this curved bridge. Furthermore, a probability distribution model of the element stiffness was established for long-term monitoring and analysis of the bridge stiffness change.

Experimental verification of a distributed computing strategy for structural health monitoring

  • Gao, Y.;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.455-474
    • /
    • 2007
  • A flexibility-based distributed computing strategy (DCS) for structural health monitoring (SHM) has recently been proposed which is suitable for implementation on a network of densely distributed smart sensors. This approach uses a hierarchical strategy in which adjacent smart sensors are grouped together to form sensor communities. A flexibility-based damage detection method is employed to evaluate the condition of the local elements within the communities by utilizing only locally measured information. The damage detection results in these communities are then communicated with the surrounding communities and sent back to a central station. Structural health monitoring can be done without relying on central data acquisition and processing. The main purpose of this paper is to experimentally verify this flexibility-based DCS approach using wired sensors; such verification is essential prior to implementation on a smart sensor platform. The damage locating vector method that forms foundation of the DCS approach is briefly reviewed, followed by an overview of the DCS approach. This flexibility-based approach is then experimentally verified employing a 5.6 m long three-dimensional truss structure. To simulate damage in the structure, the original truss members are replaced by ones with a reduced cross section. Both single and multiple damage scenarios are studied. Experimental results show that the DCS approach can successfully detect the damage at local elements using only locally measured information.

Structural health monitoring using piezoceramic transducers as strain gauges and acoustic emission sensors simultaneously

  • Huo, Linsheng;Li, Xu;Chen, Dongdong;Li, Hongnan
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.595-603
    • /
    • 2017
  • Piezoceramic transducers have been widely used in the health monitoring of civil structures. However, in most cases, they are used as sensors either to measure strain or receive stress waves. This paper proposes a method of using piezoelectric transducers as strain gauges and acoustic emission (AE) sensors simultaneously. The signals received by piezoceramic transducers are decomposed into different frequency components for various analysis purposes. The low-frequency signals are used to measure strain, whereas the high-frequency signals are used as acoustic emission signal associated with local damage. The b-value theory is used to process the AE signal in piezoceramic transducers. The proposed method was applied in the bending failure experiments of two reinforced concrete beams to verify its feasibility. The results showed that the extracted low-frequency signals from the piezoceramic transducers had good agreement with that from the strain gauge, and the processed high-frequency signal from piezoceramic transducers as AE could indicate the local damage to concrete. The experimental results verified the feasibly of structural health monitoring using piezoceramic transducers as strain gauges and AE sensors simultaneously, which can advance their application in civil engineering.

Fish Monitoring through a Fish Run on the Nakdong River using an Acoustic Camera System (음향카메라시스템을 이용한 낙동강어도의 어류모니터링)

  • Yang, Yong-Su;Bae, Jae-Hyun;Lee, Kyoung-Hoon;Park, Jung-Su;Sohn, Byung-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.735-739
    • /
    • 2010
  • This study investigated a method for monitoring fishes immigrating to upper streams from the sea in relation to water level with elapsed time, and measured fish behavior patterns and swimming speed in a fishing boat gateway using an acoustic camera system. This method was employed due to difficulties, linked to high turbidity, of using only underwater optical systems for monitoring fish migrating to brackish water. Results showed that fish length distribution showed high correlation between haul sampling and an automatic counting algorithm supported by the DIDSON software program. These results will help to maximize the effects of fish run management by increasing understanding of the amount of major fish species migrating in relation to durable water levels.