• Title/Summary/Keyword: monitoring of $CO_2$ underground

Search Result 41, Processing Time 0.029 seconds

On the Diurnal Variations of CO and $CO_2$ in the Underground Atmospheric Environments (지하대기중의 CO 및 $CO_2$의 일변화 특성에 관한 연구)

  • 이동인;이지연
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.381-391
    • /
    • 1994
  • This paper presents the disributions and variations of CO, $CO_2$, number of people and temperature in underground shopping center and subway of Seomyeon and Jagalchi in Pusan, Korea for two times during October and November in 1993, respectively. NDIR analyzer is used for the analysis of CO and $CO_2$. The temperature is obtained from a mercury therometer. The results o( observation and analysis show that the variation of $CO_2$ is strongly related to number of people and temperature. The correlation coefficients between temperature, COB and Number of people are higher than 0. at both of places. The pollution of CO2 of Seomyeon is higher than that of Jagachi in underground shopping center. However, CO is not correlated with the temperature and the Number of people. From the results, we found that the indoor air quality monitoring system is needed for the prevention of the underground air Pollution.

  • PDF

Air Quality Monitoring System Using NDIR-CO$_2$ Sensor for Underground Space based on Wireless Sensor Network (비분산적의선 CO$_2$센서를 이용한 무선 센서 네트워크 기반의 지하 공기질 모니터링 시스템)

  • Kwon, Jong-Won;Kim, Jo-Chun;Kim, Gyu-Sik;Kim, Hie-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.28-38
    • /
    • 2009
  • In this study, a remote air quality monitoring system for underground spaces was developed by using NDIR-based CO$_2$ sensor. And the remote monitoring system based on wireless sensor networks was installed practically on the subway station platform. More than 6.5 million citizens commutate everyday by the Seoul subway transportation that is the most typical public transportation. They concern about air quality with increasing interest on public health or many workers in subway stations or underground shopping centers. Recently, the Korean Ministry of Environment has operated the air quality monitoring system in some subway stations for testing phase. However, it showed many defects which are large-scale, high-cost and maintenance of precision sensors imported from abroad. Therefore this research includes the reliability test and a theoretical study about the inexpensive commercialized CO$_2$ sensor for reliable measurement of air quality which changes rapidly by the surrounding environments. And then we develop the wireless sensor nodes and the gateway applied for remote air quality monitoring. In addition, web server program was realized to manage air quality in the subway platform. This result will be valuable for a basic research for air quality management in underground spaces for future study.

Enhanced Oil Recovery (EOR) Technology Coupled with Underground Carbon Dioxide Sequestration (CO2 지하저장과 연계한 원유회수증진 기술)

  • Kim, Hyung-Mok;Bae, Wi-Sup
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Enhanced oil recovery (EOR) technology coupled with underground carbon dioxide sequestration is introduced. $CO_2$ can be injected into an oil reservoir in order to enhance oil production rate and $CO_2$ EOR can be turned into CCS in a long term sense. Coupling $CO_2$ EOR with CCS may secure a large scale and consistent $CO_2$ source for EOR, and the $CO_2$ EOR can bring an additional economic benefit for CCS, since the benefit from enhanced oil production by $CO_2$ EOR will compensate costs for CCS implementation. In this paper, we introduced the characteristics of $CO_2$ EOR technology and its market prospect, and reviewed the Weyburn $CO_2$ EOR project which is the first large-scale $CO_2$ EOR case utilizing an anthropogenic $CO_2$ source. We also introduced geotechnical elements for a successful and economical implementation of $CO_2$ EOR with CCS and they were a miscroseismic monitoring during and after injection of $CO_2$, and determination of minimum miscible pressure (MMP) and maximum injection pressure (MIP) of $CO_2$.

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology (지그비 기술을 이용한 지하광산 내 실시간 환경 모니터링 시스템 현장 적용 연구)

  • Park, Yo Han;Lee, Hak Kyung;Seo, Man Keun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.108-123
    • /
    • 2019
  • In recent years, as safety management in underground mines has become more important in the worldwide, mine safety management technologies combining information communication technology such as real-time worker position tracking, monitoring system and equipment remote control have been developed. Wireless communication system is mainly applied to these technologies for the flexibility of network configuration. There are some cases the monitoring system was installed in domestic underground mines, but, it is necessary to develop the technology more suitable for domestic mining standard. In this study, we developed the real-time environmental monitoring system using ZigBee technology and examined the result of application to domestic limestone mine. Furthermore, applicability of the developed environment monitoring system to $VentSim^{TM}$ LiveView was checked. This study is expected to contribute to the related studies like the optimization of the ventilation system in underground mines.

Evaluation on Indoor Air Quality by Statistical Analysis of Indoor Air Pollutants Concentration in a Seoul Metropolitan Underground Railway Station (서울시 지하역사 실내오염물질 농도자료의 통계분석을 통한 실내공기질 특성 평가)

  • Yim, Bongbeen;Lee, Kyusung;Kim, Jooin;Hong, Hyunsu;Kim, Jangwon;Jo, Kyung-Ho;Jung, Eulgyu;Kim, Inkyu;An, Yeonsun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.233-244
    • /
    • 2014
  • The objective of this study was to explore the characteristics of concentration of indoor air pollutants, such as $PM_{10}$, $CO_2$, and $NO_2$, measured by tele-monitoring system in a Seoul Metropolitan underground railway station from January 1, 2008 to December 31, 2012. The annual average concentration of indoor air pollutants actually varied over a wide range and was found to exhibit marked variation with time and measurement sites (tunnel inlet, platform, and concourse). After installing platform screen doors, the average $PM_{10}$ concentration on platform and concourse was decreased by 43.8% and 31.2%, respectively during the study periods. The relationship between the concentration of $PM_{10}$ and meteorological parameters (relative humidity and rainfall) or the Asian dust events was regarded as statistically significant. The correlations between the number of boarding/alighting passengers and $PM_{10}$, $CO_2$, and $NO_2$ were calculated. A p-value of less than 0.01 was regarded as significant except $NO_2$. The I/O ratio of $PM_{10}$ concentration was elevated after a congested time (about 08:00 am). The average I/O ratios of $NO_2$ were observed in concourse and platform on 03:00 am with $1.76{\pm}0.91$ and $1.50{\pm}0.51$, respectively. The average daily variation of standard excess rate of $PM_{10}$ and $NO_2$ concentration in concourse and platform was investigated. The highest standard excess rate was observed on 21:00 (09:00 pm).

Deformation and failure mechanism exploration of surrounding rock in huge underground cavern

  • Tian, Zhenhua;Liu, Jian;Wang, Xiaogang;Liu, Lipeng;Lv, Xiaobo;Zhang, Xiaotong
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.275-291
    • /
    • 2019
  • In a super-large underground with "large span and high side wall", it is buried in mountains with uneven lithology, complicated geostress field and developed geological structure. These surrounding rocks are more susceptible to stability issues during the construction period. This paper takes the left bank of Baihetan hydropower station (span is 34m) as a case study example, wherein the deformation mechanism of surrounding rock appears prominent. Through analysis of geological, geophysical, construction and monitoring data, the deformation characteristics and factors are concluded. The failure mechanism, spatial distribution characteristics, and evolution mechanism are also discussed, where rock mechanics theory, $FLAC^{3D}$ numerical simulation, rock creep theory, and the theory of center point are combined. In general, huge underground cavern stability issues has arisen with respect to huge-scale and adverse geological conditions since settling these issues will have milestone significance based on the evolutionary pattern of the surrounding rock and the correlation analyses, the rational structure of the factors, and the method of nonlinear regression modeling with regard to the construction and development of hydropower engineering projects among the worldwide.

International developments in geological storage of $CO_2$ ($CO_2$의 지질학적인 저장에 있어서의 국제적인 개발들)

  • Freund, Paul
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Geological storage of captured $CO_2$ is a new way of reducing greenhouse gas emissions to protect the climate, but is based on the established technology associated with injection of fluids underground. The geological formations of interest for this technique include operational and depleted oil and gas fields, and deep saline aquifers. Prediction of storage performance will depend on models of the behaviour of $CO_2$ in geological formations; these need to be refined and verified, and methods of monitoring developed and proved. These needs can be met through monitored demonstration and research projects. Current commercial projects that are demonstrating $CO_2$ storage include Sleipner, Weyburn, ORC, and In Salah; research projects include West Pearl Queen, Nagaoka, and Frio. In this paper, some of the monitored injection projects are described. The reservoirs employed for storing $CO_2$, and the associated monitoring techniques, are briefly reviewed. It is argued that small-scale research projects, used to develop techniques and prove models, are complementary to the large-scale monitored injections that will establish the viability of this technique for mitigating climate change.

Numerical Analysis for Shotcrete Lining at SCL Tunnel in NS2 Transmission Cable Tunnel Project in Singapore (싱가포르 케이블터널 프로젝트 NS2현장 SCL 터널에서의 숏크리트 라이닝의 변형거동 특성)

  • Kwang, Han Fook;Kim, Young Geun
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.185-194
    • /
    • 2017
  • This technical paper is a study on the unique displacements of Shotcrete Lining at the mined tunnel during excavation period through deep consideration with real time data from monitoring instrumentations correlation with the numerical analysis to identify the rock stresses and the rock spring points at the working face of the Conventional tunnelling by the Drill and Blast, based on the geological face mapping results of the project NS2, Transmission cable tunnel project in Singapore. The created geometry of numerical model was prepared to the real mined tunnel construction site including, vertical shaft, construction adit, tunnel junction area, and 2 enlargement caverns. The convergence measurements by the monitoring instrumentation were performed during the tunnel excavation and shaft sinking construction stages to guarantee the safety of complicated underground structures.

Comparison of measured values and numerical analysis values for estimating smart tunnel based groundwater levels around vertical shaft excavation (수직구 굴착시 스마트 터널기반 지하수위 현장계측과 수치해석 비교 연구)

  • Donghyuk Lee;Sangho Jung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.153-167
    • /
    • 2024
  • Recently the ground settlement has been increasing in urban area according to development. And, this may attribute a groundwater level drawdown. This study presents an analysis of groundwater level drawdown for circular vertical shaft excavation of 「◯◯◯◯ double track railway build transfer operate project」. And, in-situ monitoring data and numerical analysis were compared. So, if we examine the groundwater level drawdown in design, ground conditions should be applied so that the site situation can be reflected. And, groundwater level should be considered a seasonal measurement in order to apply the appropriate groundwater level. It was confirmed a similar predicted value to groundwater level drawdown of in-situ monitoring data.

A Study on the Development of Long-term Self Powered Underground Pipeline Remote Monitoring System (자가 발전형 장기 지하매설배관 원격감시 장치 개발에 관한 연구)

  • Kim, Youngsear;Chae, Hyun-Byung;Seo, Jae-Soon;Chae, Soo-Kwon
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.576-585
    • /
    • 2018
  • Systematic management during the whole life cycle from construction to operation and maintenance is very important for the seven underground pipelines (waterworks, sewerage, electricity, telecommunications, gas, heating, oil including waterworks and sewerage). Especially, it is the construction process that affects the whole life cycle of underground buried pipeline. In order to construct a new city or to maintain different underground pipes, it is always necessary to dig the ground and carry out construction and related work. There is a possibility that secondary and tertiary breaks frequently occur in the pipeline construction process after the piping constructed first in this process. To solve this problem, a system is needed which can monitor damage in real time. However, the supply of electric power for continuous operation of the system is limited according to the environment of underground buried pipelines, so it is necessary to develop a stable electric power supply system using natural energy rather than existing electric power. In this study, we developed a system that can operate the pipeline monitoring system for long time (24 hours and 15 days) using natural energy using wind and solar light.