• Title/Summary/Keyword: monatomic fluids

Search Result 4, Processing Time 0.016 seconds

Molecular Dynamics Simulation Study for Transport Properties of Diatomic Liquids

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1697-1704
    • /
    • 2007
  • We present results for transport properties of diatomic fluids by isothermal-isobaric (NpT) equilibrium molecular dynamics (EMD) simulations using Green-Kubo and Einstein formulas. As the molecular elongation of diatomic molecules increases from the spherical monatomic molecule, the diffusion coefficient increases, indicating that longish shape molecules diffuse more than spherical molecules, and the rotational diffusion coefficients are almost the same in the statistical error since random rotation decreases. The calculated translational viscosity decreases with the molecular elongation of diatomic molecule within statistical error bar, while the rotational viscosity increases. The total thermal conductivity decreases as the molecular elongation increases. This result of thermal conductivity for diatomic molecules by EMD simulations is again inconsistent with the earlier results of those by non-equilibrium molecular dynamics (NEMD) simulations even though the missing terms related to rotational degree of freedom into the Green-Kubo and Einstein formulas with regard to the calculation of thermal conductivity for molecular fluids are included.

A Numerical Analysis of Rarefied Flow of Cylinder Using FDDO (FDDO를 이용한 실린더를 지나는 희박기체의 해석)

  • Ahn M. Y.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.138-144
    • /
    • 1998
  • The BGK equation, which is the kinetic model equation of Boltzmann equation, is solved using FDDO(finite difference with the discrete-ordinate method) to compute the rarefied flow of monatomic gas. Using reduced velocity distribution and discrete ordinate method, the scalar equation is transformed into a system of hyperbolic equations. High resolution ENO(Essentially Non-Oscillatory) scheme based on Harten-Yee's MFA(Modified Flux Approach) method with Strang-type explicit time integration is applied to solve the system equations. The calculated results are well compared with the experimental density field of NACA0012 airfoil, validating the developed computer code. Next. the computed results of circular cylinder flow for various Knudsen numbers are compared with the DSMC(Direct Simulation Monte Carlo) results by Vogenitz et al. The present scheme is found to be useful and efficient far the analysis of two-dimensional rarefied gas flows, especially in the transitional flow regime, when compared with the DSMC method.

  • PDF

Fluid flow dynamics in deformed carbon nanotubes with unaffected cross section

  • Rezaee, Mohammad;Yeganegi, Arian;Namvarpour, Mohammad;Ghassemi, Hojat
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.253-261
    • /
    • 2022
  • Numerical modelling of an integrated Carbon NanoTube (CNT) membrane is only achievable if probable deformations and realistic alterations from a perfect CNT membrane are taken into account. Considering the possible forms of CNTs, bending is one of the most probable deformations in these high aspect ratio nanostructures. Hence, investigation of effect associated with bent CNTs are of great interest. In the present study, molecular dynamics simulation is utilized to investigate fluid flow dynamics in deformed CNT membranes, specifically when the tube cross section is not affected. Bending in armchair (5,5) CNT was simulated using Tersoff potential, prior to flow rate investigation. Also, to study effect of inclined entry of the CNT to the membrane wall, argon flow through generated inclined CNT membranes is examined. The results show significant variation in both cases, which can be interpreted as counter-intuitive, since the cross section of the CNT was not deformed in either case. The distribution of fluid-fluid and fluid-wall interaction potential is investigated to explain the anomalous behavior of the flow rate versus bending angle.

On Implementation of the Finite Difference Lattice Boltzmann Method with Internal Degree of Freedom to Edgetone

  • Kang, Ho-Keun;Kim, Eun-Ra
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2032-2039
    • /
    • 2005
  • The lattice Boltzman method (LBM) and the finite difference-based lattice Boltzmann method (FDLBM) are quite recent approaches for simulating fluid flow, which have been proven as valid and efficient tools in a variety of complex flow problems. They are considered attractive alternatives to conventional finite-difference schemes because they recover the Navier-Stokes equations and are computationally more stable, and easily parallelizable. However, most models of the LBM or FDLBM are for incompressible fluids because of the simplicity of the structure of the model. Although some models for compressible thermal fluids have been introduced, these models are for monatomic gases, and suffer from the instability in calculations. A lattice BGK model based on a finite difference scheme with an internal degree of freedom is employed and it is shown that a diatomic gas such as air is successfully simulated. In this research we present a 2-dimensional edge tone to predict the frequency characteristics of discrete oscillations of a jet-edge feedback cycle by the FDLBM in which any specific heat ratio $\gamma$ can be chosen freely. The jet is chosen long enough in order to guarantee the parabolic velocity profile of a jet at the outlet, and the edge is of an angle of $\alpha$=23$^{o}$. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations resulting from periodic oscillation of the jet around the edge.