• Title/Summary/Keyword: moment-rotation

Search Result 504, Processing Time 0.024 seconds

The Strength Analysis of Railroad Continuous Bridge Considering Plastic Deformation (소성변형을 고려한 철도연속교의 강도해석)

  • Chung Kyung-Hee
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.556-561
    • /
    • 2005
  • The steel shows plastic deformation after the yield point exceeds. The plastic deformation due to overloads occurs at the interior support of a continuous bridge. The plastic deformation is concentrated at the interior support and the permanence deformation at the interior support remains after loads apply. Because local yielding causes the positive moment at the interior support, it is called 'auto-moment'. Auto-moment redistributes the elastic moment. Because of redistribution, auto-moment decreases the negative moment at the interior support of a continuous bridge. In this paper, the plastic rotation is evaluated using the moment-rotation curve proposed by Schalling and Beam-line method. Moreover, auto-moment is derived from the experiment curve.

  • PDF

On the Influence of the Moment of Inertia of Gas on the Galactic Rotation Curves

  • Portnov, Yuriy A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.99-108
    • /
    • 2022
  • There are two models that explain the rotation curves of galaxies: dark matter, which gives the missing contribution to the gravitational potential of the standard theory of gravity, and modified theories of gravity, according to which the gravitational potential is created by ordinary visible mass. Both models have some disadvantages. The article offers a new look at the problem of galactic rotation curves. The author suggests that the moment of inertia creates an additional gravitational potential along with the mass. The numerical simulation carried out on the example of fourteen galaxies confirms the validity of such an assumption. This approach makes it possible to explain the constancy of gas velocities outside the galactic disk without involving the hypothesis of the existence of dark matter. At the same time, the proposed approach lacks the disadvantages of modified theories of gravity, where the gravitational potential is created only by the mass of visible matter.

Nonlinear analysis of RC beams based on simplified moment-curvature relation considering fixed-end rotation

  • Kim, Sun-Pil
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.457-475
    • /
    • 2007
  • A simple analytical procedure to analyze reinforced concrete (RC) beams with cracked section is proposed on the basis of the simplified moment-curvature relations of RC sections. Unlike previous analytical models which result in overestimation of stiffness and underestimation of structural deformations induced from assuming perfect-bond condition between steel and concrete, the proposed analytical procedure considers fixed-end rotation caused by anchorage. Furthermore, the proposed analytical procedure, compared with previous numerical models, promotes effectiveness of analysis by reflecting several factors which can influence nonlinearity of RC structure into the simplified moment-curvature relation. Finally, correlation studies between analytical and experimental results are conducted to establish the applicability of the proposed analytical procedure to the nonlinear analysis of RC structures.

Bridge-type structures analysis using RMP concept considering shear and bending flexibility

  • Hosseini-Tabatabaei, Mahmoud-Reza;Rezaiee-Pajand, Mohmmad;Mollaeinia, Mahmoud R.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.189-199
    • /
    • 2020
  • Researchers have elaborated several accurate methods to calculate member-end rotations or moments, directly, for bridge-type structures. Recently, the concept of rotation and moment propagation (RMP) has been presented considering bending flexibility, only. Through which, in spite of moment distribution method, all joints are free resulting in rotation and moment emit throughout the structure similar to wave motion. This paper proposes a new set of closed-form equations to calculate member-end rotation or moment, directly, comprising both shear and bending flexibility. Furthermore, the authors program the algorithm of Timoshenko beam theory cooperated with the finite element. Several numerical examples, conducted on the procedures, show that the method is superior in not only the dominant algorithm but also the preciseness of results.

Moment-rotation relationship of hollow-section beam-to-column steel joints with extended end-plates

  • Wang, Jia;Zhu, Haiming;Uy, Brian;Patel, Vipulkumar;Aslani, Farhad;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.717-734
    • /
    • 2018
  • This paper presents the flexural performance of steel beam-to-column joints composed of hollow structural section beams and columns. A finite element (FE) model was developed incorporating geometrical and material nonlinearities to evaluate the behaviour of joints subjected to bending moments. The numerical outcomes were validated with experimental results and compared with EN1993-1-8. The demountability of the structure was discussed based on the tested specimen. A parametric analysis was carried out to investigate the effects of steel yield strength, end-plate thickness, beam thickness, column wall thickness, bolt diameter, number of bolts and location. Consequently, an analytical model was derived based on the component method to predict the moment-rotation relationships for the sub-assemblies with extended end-plates. The accuracy of the proposed model was calibrated by the experimental and numerical results. It is found that the FE model is fairly reliable to predict the initial stiffness and moment capacity of the joints, while EN1993-1-8 overestimates the initial stiffness extensively. The beam-to-column joints are shown to be demountable and reusable with a moment up to 53% of the ultimate moment capacity. The end-plate thickness and column wall thickness have a significant influence on the joint behaviour, and the layout of double bolt-rows in tension is recommended for joints with extended end-plates. The derived analytical model is capable of predicting the moment-rotation relationship of the structure.

Comparison of support vector machines enabled WAVELET algorithm, ANN and GP in construction of steel pallet rack beam to column connections: Experimental and numerical investigation

  • Hossein Hasanvand;Tohid Pourrostam;Javad Majrouhi Sardroud;Mohammad Hasan Ramasht
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.19-28
    • /
    • 2023
  • This paper describes the experimental investigation of steel pallet rack beam-to-column connec-tions. Total behavior of moment-rotation (M-φ) curve and the effect of particular characteristics on the behavior of connection were studied and the associated load strain relationship and corre-sponding failure modes are presented. In this respect, an estimation of SPRBCCs moment and rotation are highly recommended in early stages of design and construction. In this study, a new approach based on Support Vector Machines (SVMs) coupled with discrete wavelet transform (DWT) is designed and adapted to estimate SPRBCCs moment and rotation according to four input parameters (column thickness, depth of connector and load, beam depth,). Results of SVM-WAVELET model was compared with genetic programming (GP) and artificial neural networks (ANNs) models. Following the results, SVM-WAVELET algorithm is helpful in order to enhance the accuracy compared to GP and ANN. It was conclusively observed that application of SVM-WAVELET is especially promising as an alternative approach to estimate the SPRBCCs moment and rotation.

The characteristics of section applied image inspection system to the moment values are invariant with respect to variable object size and rotation (단면의 성질을 적용한 크기와 회전 변화에 불변인 영상 검사 시스템)

  • 이용중;김태원;김기대;류재엽
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.131-136
    • /
    • 2001
  • The purpose of this paper is to develop image inspection system endows an automatic operating and measuring that the moment values are invariant with respect to variable object size and rotation. In this paper, using these moment feature vector with Hu s 7 invariant moment is also given. The characteristics of section which is applied in the mechanics used moment descriptor of invariant moment detection algorithm for image inspection system. Corresponding rates between 94% and 96% have been achived for all object tested.

  • PDF

Analysis shoulder pain of tennis players and the movement of the scapula in flat serve (테니스 선수의 어깨 통증과 플랫서브 동작의 견갑골 움직임 분석)

  • Park, Jong-Chul;Cha, Jung-Hoon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.393-400
    • /
    • 2020
  • This study used a three-dimensional motion analysis system for 15 elite tennis players (male 8, female7) to identify the relevance of scapula movement to shoulder pain. During the flat serve, the angular velocity and joint moment of scapula anterior/posterior tilt, downward/upward rotation, internal/external rotation were calculated and this was compared between groups. As a result, the maximum angular velocity for the anterior and posterior tilt tended to be higher in control group(CG) than in the shoulder pain group(SPG), and the maximum angular velocity for internal and external rotation in all phases except the follow-through phase was higher than that of CG. The maximum moment for the anterior and posterior tilt in the late coking phase was statistically significantly higher than that of SPG, the joint moment for the downward and upward rotation of the coking phase was statistically significantly lower than that of CG, and the moment for the internal and external rotation, the SPG was found to be lower than that of CG in the whole phases.

Estimation of Beam Plastic Rotation Demands for Special Moment-Resisting Steel Frames (강구조 특수모멘트골조의 보 소성변형요구량 평가)

  • Eom, Tae-Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.405-415
    • /
    • 2011
  • For the safe seismic design of buildings, it is necessary to predict the plastic deformation demands of the members as well as the story drift ratio. In the present study, a simple method of estimating the beam plastic rotation was developed for special-moment-resisting steel frame structures designed with strong column-weak beam behavior. The proposed method uses elastic analysis rather than nonlinear analysis, which is difficult to use in practice. The beam plastic rotation was directly calculated based on the results of the elastic analysis, addressing the moment redistribution, the column and joint dimensions, the movement of the plastic hinge, the panel zone deformation, the gravity load, and the strain-hardening behavior. In addition, the rocking effect of the braced frame or core wall on the beam plastic rotation was addressed. For verification, the proposed method was applied to a six-story special-moment frame designed with strong column-weak beam behavior. The predicted plastic rotations of the beams were compared with those that were determined via nonlinear analysis. The beam plastic rotations that were predicted using the proposed method correlated well with those that were determined from the nonlinear pushover analysis.