• Title/Summary/Keyword: moment-curvature relationship

Search Result 110, Processing Time 0.026 seconds

Force-deformation behaviour modelling of cracked reinforced concrete by EXCEL spreadsheets

  • Lam, Nelson;Wilson, John;Lumantarna, Elisa
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.43-57
    • /
    • 2011
  • Force-deformation modelling of cracked reinforced concrete is essential for a displacement-based seismic assessment of structures and can be achieved by fibre-element analysis of the cross-section of the major lateral resisting elements. The non-linear moment curvature relationship obtained from fibre-element analysis takes into account the significant effects of axial pre-compression and contributions by the longitudinal reinforcement. Whilst some specialised analysis packages possess the capability of incorporating fibre-elements into the modelling (e.g., RESPONSE 2000), implementation of the analysis on EXCEL is illustrated in this paper. The outcome of the analysis is the moment-curvature relationship of the wall cross-section, curvature at yield and at damage control limit states specified by the user. Few software platforms can compete with EXCEL in terms of its transparencies, versatility and familiarity to the computer users. The program has the capability of handling arbitrary cross-sections that are without an axis of symmetry. Application of the program is illustrated with examples of typical cross-sections of structural walls. The calculated limiting curvature for the considered cross-sections were used to construct displacement profiles up the height of the wall for comparison with the seismically induced displacement demand.

Flexural performance of FRP-reinforced concrete encased steel composite beams

  • Kara, Ilker Fatih
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.775-793
    • /
    • 2016
  • This paper presents a numerical method for estimating the curvature, deflection and moment capacity of FRP-reinforced concrete encased steel composite beams (FRP-RCS). A sectional analysis is first carried out to predict the moment-curvature relationship from which beam deflection and moment capacity are then calculated. Comparisons between theoretical and experimental results of tests conducted elsewhere show that the proposed numerical technique can accurately predict moment capacity and deflection of FRP-RCS composite beam. The numerical results also indicated that beam ductility and stiffness are improved when encased steel is added to FRP reinforced concrete beams. ACI, ISIS and Bischoff models for deflection prediction compared well at low load, however, significantly underestimated the experimental results for high load levels.

Moment-Curvature Relationship of Structural Wells with Confined Boundary Element (단부 횡보강된 구조벽의 모멘트-곡률 관계)

  • Kang, Su-Min;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.323-334
    • /
    • 2003
  • For performance-based design using nonlinear static analysis, it is required to predict the inelastic behavior of structural members accurately. In the present study, a nonlinear numerical analysis was peformed to develop the method describing the moment-curvature relationship of structural wall with boundary confinement. Through the numerical analysis, variations of behavioral characteristics and failure mechanism with the arrangement of vertical reinforcement and the length of boundary confinement were studied. According to the analysis, the maximum moment-carrying capacity of structural walls with adequately confined boundary elements is developed at the moment the unconfined concrete reaches the ultimate compressive strain. Walls with flexural re-bars concentrated on the boundaries fails in a brittle manner. As vortical re-bars in the web increases, the brittle failure is prevented and a ductile failure occurs. Based on the findings, moment-curvature curves for walls with a variety of re-bar arrangement were developed. According to the proposed relationships, deformability of the structural walls wth boundary confinement increases as the compressive strength of the confined concrete increases compared to the applied compressive force.

On the large plastic deformation of tubular beams under impact loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.463-474
    • /
    • 1995
  • When a tubular cantilever beam is loaded by a dynamic force applied transversely at its tip, the strain hardening of the material tends to increase the load carrying capacity and local buckling and cross-sectional overlization occurring in the tube section tends to reduce the moment carrying capacity and results in structural softening. A theoretical model is presented in this paper to analyze the deformation of a tubular beam in a dynamic response mode. Based on a large deflection analysis, the hardening/softening M-${\kappa}$ relationship is introduced. The main interest is on the curvature development history and the deformed configuration of the beam.

Bond mechanism effect on the flexural behavior of steel reinforced concrete composite members

  • Juang, Jia-Ling;Hsu, Hsieh-Lung
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.387-400
    • /
    • 2006
  • This paper discusses the composite mechanism and its effect upon the behavior of a steel reinforced concrete (SRC) member subjected to a flexural load. The relationship between member strength and deformation is established using the bond strength between the steel and reinforced concrete. An analytical model is proposed and used to incorporate the sectional strains and bond strength at the elastic and inelastic stages for moment-curvature relationship derivation. The results from the flexural load tests are used to validate the accuracy of the proposed model. Comparisons between the experimental information and the analytical results demonstrate close moment-curvature relevance, which justifies the applicability of the proposed method.

Service life of concrete culverts repaired with biological sulfate-resisting mortars

  • Hyun-Sub, Yoon;Keun-Hyeok, Yang;Nguyen, Van Tuan;Seung-Jun, Kwon
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.409-419
    • /
    • 2022
  • The purpose of this study is to examine the effectiveness of biological repairing mortars on restoring the structural performance of a sewage culvert deteriorated by sulfate attack. The biological mortars were developed for protecting concrete structures exposed to sulfate attack based on the block membrane action of the bacterial glycocalyx. The diffusion coefficient of sulfate ions in the biological mortars was determined from the natural diffusion cell tests. The effect of sulfate-attack-induced concrete deterioration on the structural performance of culverts was examined by using the moment-curvature relationship predicted based on the nonlinear section lamina approach considering the sulfuric-acid-induced degradation of the structure. Typical analytical assessments showed that biological mortars were quite effective in increasing the sulfate-resistant service life of sewage culverts.

Effective Moment of Inertia of Flexural Members Based on the Concrete Stress-Strain Curve in EC-2 (EC-2의 콘크리트 응력-변형률 곡선에 기반한 휨부재의 유효단면2차모멘트)

  • Yum, Hwan-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.655-663
    • /
    • 2016
  • The present study shows the moment-average curvature relationship and effective inertia moment of RC beams obtained from the nonlinear analysis based on the parabola-rectangular stress-strain curve defined in EC-2 code. The variables examined are concrete strength and steel ratio, and moment-average curvature relationship and effective inertia moment obtained are compared with those of the current KCI provisions. As the results of the comparison, the followings could be said: Since the KCI provisions(the Branson method) were originally derived based on the experimental data ranged from 2.2 to 4 of $M/M_{cr}$ and 1.3 to 3.5 of $I_{ut}/I_{cr}$, thereby within these ranges the inertia moments obtained from the nonlinear analysis are closely agreed with those predicted by the Branson method. However, beyond those range the remarkable difference could be found between the two results. In particular, for beams having low steel ratio the inertia moment resulted from the nonlinear analysis are significantly smaller than those obtained from the KCI(Branson) method. This result may imply that the deflection of lightly reinforced members, such as slabs in buildings, becomes much larger than those calculated according to the current design provisions.

Inelastic Time History Analysis of a 5-Story Reinforced Concrete IMRF (5층 철근콘크리트 중간모멘트골조의 비탄성 시간이력해석)

  • Kang, Suk Bong;Lim, Byeong Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.13-20
    • /
    • 2012
  • In this study, 5-story structures were designed in accordance with KBC2009 for inelastic time history analysis of RC IMRF. Bending moment-curvature relationship for beam and column was identified with fiber model and bending moment-rotation relationship for beam-column joint was calculated with simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The hysteretic behavior was simulated with three-parameter model suggested in IDARC program. The analytical results showed that the inelastic shear behavior of the joint could be neglected in the structural design for seismic design category C but the structure of category D did not satisfy the criteria of FEMA 356 for collapse prevention performance level.

An Experimental Study on the Buckling Strength of subject to Asymmetrical Double Curvature Stainless Steel Circular Hollow Section Beam-Columns (비대칭 이중곡률 스테인리스 원형강관 보-기둥의 좌굴내력에 관한 실험적 연구)

  • Jang, Ho Ju;Park, Jae Seon;Yang, Young Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.351-360
    • /
    • 2009
  • This study is a series of experimental investigations of the buckling strengths of eccentrically compressed, cold-formed, stainless-steel, circular, hollow-section beam columns. The principal parameters that were used in this study were the slenderness ratios (Lk/r = 30, 50, 70) and the magnitude of eccentricity e(one way: 0, 25, 50, 75, and 100mm: the other way: 0, 12.5, 25, 37.5, and 50mm) on the asymmetrical end-moment of a double curvature. The objectives of the study were to obtain the maximum loads through an experiment and to compare the experimental behaviors with the analysis results. The ultimate buckling strength of the square section members were evaluated using a numerical method, in accordance with the bending moment-axial force(M-P) interaction curves. The behavior of each specimen was displayed in the form of the strength-displacement and moment-angle(M-$\theta$) relationship.

Inelastic analysis of concrete beams strengthened with various fiber reinforced polymer (FRP) systems

  • Terro, M.J.;El-Hawary, M.M.;Hamoush, S.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.177-188
    • /
    • 2005
  • This paper presents a numerical model developed to evaluate the load-deflection and moment-curvature relationship for concrete beams strengthened externally with four different Fiber Reinforced Polymer (FRP) composite systems. The developed model considers the inelastic behavior of concrete section subjected to a combined axial force and bending moment. The model accounts for tensile strength of concrete as defined by the modulus of rupture of concrete. Based on the adopted material constitutive relations, the model evaluates the sectional curvature as a function of the applied axial load and bending moment. Deflections along the beam are evaluated using a finite difference technique taking into account support conditions. The developed numerical technique has been tested on a cantilever beam with a transverse load applied at its end. A study of the behavior of the beam with tension reinforcement compared to that with FRP areas giving an equivalent ultimate moment has been carried out. Moreover, cracking of the section in the tensile region at ultimate load has also been considered. The results indicated that beams reinforced with FRP systems possess more ductility than those reinforced with steel. This ductility, however, can be tuned by increasing the area of FRP or by combining different FRP layers.