• Title/Summary/Keyword: moment resisting capacity

Search Result 177, Processing Time 0.019 seconds

An Analytical Study on the Embedded Depth of Concrete Poles in Inclined ground (경사지에서 콘크리트 전주의 근입깊이에 대한 해석적 연구)

  • Yoon, Ki-Yong;Kim, Eung-Seok;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1164-1169
    • /
    • 2014
  • Overturning of concrete poles are occurred annually due to natural disaster such as a typhoon. The present code for the resisting moment and the safety on overturning of concrete poles in inclined ground is inadequate. In this study, the concept of the code for those in flat ground is applied to calculate the resisting moment in inclined ground using general analysis program L-Pile Plus13.8. According to the analytical results, the resisting moment in inclined ground is rapidly decrease as increasing the slope angle although the embedded depth are added by the additional embedded depth on the code. It is revealed that the capacity in inclined ground is equivalent to that in flat ground if additional embedded depth is increased from 1.5 to 3 times.

Seismic behavior of steel frames with replaceable reinforced concrete wall panels

  • Wu, Hanheng;Zhou, Tianhua;Liao, Fangfang;Lv, Jing
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1055-1071
    • /
    • 2016
  • The paper presents an innovative steel moment frame with the replaceable reinforced concrete wall panel (SRW) structural system, in which the replaceable concrete wall can play a role to increase the overall lateral stiffness of the frame system. Two full scale specimens composed of the steel frames and the replaceable reinforced concrete wall panels were tested under the cyclic horizontal load. The failure mode, load-displacement response, deformability, and the energy dissipation capacity of SRW specimens were investigated. Test results show that the two-stage failure mode is characterized by the sequential failure process of the replaceable RC wall panel and the steel moment frame. It can be found that the replaceable RC wall panels damage at the lateral drift ratio greater than 0.5%. After the replacement of a new RC wall panel, the new specimen maintained the similar capacity of resisting lateral load as the previous one. The decrease of the bearing capacity was presented between the two stages because of the connection failure on the top of the replaceable RC wall panel. With the increase of the lateral drift, the percentage of the lateral force and the overturning moment resisted by the wall panel decreased for the reason of the reduction of its lateral stiffness. After the failure of the wall panel, the steel moment frame shared almost all the lateral force and the overturning moment.

Seismic Fragility Functions for Steel Moment Resisting Frames using Incremental Dynamic Analyses (증분동적해석을 이용한 철골모멘트골조의 지진취약도 함수)

  • Lee, Seung-Won;Yi, Waon-Ho;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.509-516
    • /
    • 2014
  • Accuracy of seismic response evaluated by a capacity spectrum method (CSM) is generally known to be less than that by Incremental dynamic analysis (IDA). In this paper, a procedure for IDA based seismic fragility curves for steel moment resisting frames was suggested. This study compares seismic fragility curves using the suggested method (IDA method) with those using a CSM and intends to verify the validity of the IDA method. The shapes of both seismic fragility curves are similar in slight and moderate damage states. However, in the case of extensive and complete damage states, the fragility curves obtained from the IDA method presents a more steep slope due to less variation (or uncertainties). This is due to the fact that the IDA method can properly capture the structural response beyond yielding rather than the CSM.

Cyclic Behavior of Interior Joints in Post Tensioned Flat Plate Slab Systems (내부 포스트 텐션 플랫 플레이트 슬래브 기둥 접합부의 이력거동)

  • Kee Seong Hoon;Han Sang Whan;Ha Sang-Su;Lee Li Ryung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.107-110
    • /
    • 2005
  • In general, post tensioned (PT) flat plate slab systems have been used as a Gravity Load Resisting System (GLRS) in buildings. Thus, these systems should be constructed with Lateral Force Resisting Systems (LFRS) such as shear walls and moment resisting frames. When lateral loads such as winds or earthquakes occur, lateral load resisting systems undergo displacement by which connected gravity systems experience lateral displacement. Therefore, GLRS should have some lateral displacement capacity in order to hold gravity loads under severe earthquakes and winds. Since there are the limited number of researches on PT flat plate slab systems, the behavior of the systems have not been well defined. This study investigated the cyclic behavior of post tensioned flat plate slab systems. For this purpose, an experimental test was carried out using 4 interior PT flat plate slab-column specimens. All specimens have bottom reinforcement in the slab around the slab-column connection. Test variables of this experimental study are vertical load level and tendon distribution patterns.

  • PDF

Effect of base isolation systems on increasing the resistance of structures subjected to progressive collapse

  • Tavakoli, Hamid R.;Naghavi, Fahime;Goltabar, Ali R.
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.639-656
    • /
    • 2015
  • Seismic isolation devices are commonly used to mitigate damages caused by seismic responses of structures. More damages are created due to progressive collapse in structures. Therefore, evaluating the impact of the isolation systems to enhance progressive collapse-resisting capacity is very important. In this study, the effect of lead rubber bearing isolation system to increase the resistance of structures against progressive collapse was evaluated. Concrete moment resisting frames were used in both the fixed and base-isolated model structures. Then, progressive collapse-resisting capacity of frames was investigated using the push down nonlinear static analysis under gravity loads that specified in GSA guideline. Nonlinear dynamic analysis was performed to consider dynamic effects column removal under earthquake. The results of the push down analysis are highly dependent on location of removal column and floor number of buildings. Also, seismic isolation system does not play an effective role in increasing the progressive collapse-resisting capacities of structures under gravity loads. Base isolation helps to localize failures and prevented from spreading it to intact span under seismic loads.

Lateral Resisting Capacity for CFT Column to RC Flat Plate Slab Exterior Connections (CFT 기둥-RC 무량판 슬래브 외부접합부의 횡저항 성능)

  • Song, Ho-Beom;Song, Jin-Kyu;Oh, Sang-Won;Kim, Byung-Jo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.61-64
    • /
    • 2008
  • A combination of CFT column and RC flat plate without formworks is very effectively rapid constructions. This paper verified the lateral resisting capacity of CFT column-RC flat plate exterior connection in comparison with general RC column-flat plate connection and detected moment capacity and ductility capacity of connection according to moment-displacement ratio. We made and tested specimens which have different variables respectively and as a result derive a following conclusion. In CFT-E2 specimen a critical section was extended and maximum moment increased 20% respectively in comparison to general RC column specimen. In BME and CFT-E1 specimens generally shear governed behaviors and CFT-E2 specimen complemented with seismic band, flexure behavior region of slab was extended and also ductility ratio and energy absorptance increased.

  • PDF

Application of shakedown analysis technique to earthquake-resistant design of ductile moment-resisting steel structures

  • Lee, Han-Seon;Bertero, Vitelmo V.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.31-46
    • /
    • 1993
  • The motivations of the application of shakedown analysis to the earthquake-resistant design of ductile moment-resisting steel structures are presented. The problems which must be solved with this application are also addressed. The illustrative results from a series of static and time history nonlinear analyses of one-bay three-story steel frame and the related discussions have shown that the incremental collapse may be the critical design criterion in case of earthquake loading. Based on the findings, it was concluded that the inelastic excursion mechanism for alternation load pattern, such as in earthquake, should be the sidesway mechanism of the whole structure for the efficient mobilization of the structural energy dissipating capacity and that the shakedown analysis technique can be used as a tool to ensure this mechanism.

Seismic Performance Evaluation of Special Reinforced Concrete Moment Resisting Frames With Hybrid Slit-Friction Damper (복합 슬릿-마찰 감쇠장치가 적용된 철근 콘크리트 특수 모멘트 저항골조의 내진성능 평가)

  • Lee, Joon-Ho;Kim, Gee-Cheol;Kim, Jin-Koo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • This study develops a new hybrid passive energy dissipation device for seismic rehabilitation of an existing structure. The device is composed of a friction damper combined with a steel plate with vertical slits as a hysteretic damper. Analytical model is developed for the device, and the capacity of the hybrid device to satisfy a given target performance is determined based on the ASCE/SEI 7-10 process. The effect of the device is verified by nonlinear dynamic analyses using seven earthquake records. The analysis results show that the dissipated inelastic energy is concentrated on the hybrid damper and the maximum interstory drift of the SMRF with damping system satisfies the requirement of the current code.

A Study on the Moment Resisting Performance of the Hybrid Beam-Column Connection System with Structural Tee (T 형강을 사용한 합성골조 보-기둥 접합부의 휨 저항성능에 관한 연구)

  • 임대성;최광호;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.597-602
    • /
    • 1998
  • The composite systems, consisting of R/C Columns-Steel Beams, are reasonable structures because of their constructional and economical advantages, workability and so on. But, it is difficult to apply the composite systems to actual design due to material dissimilarity and complicate stress flow in the connection. This study aims to propose the hybrid beam-column connection system with structural tee and through experimental research make clear the shear and moment resistance capacity and stress transfer mechanism.

  • PDF

Evaluation of Flexural Strength and Ductility of Hybrid Fiber Reinforced UHSC Flexural Members (하이브리드 강섬유 보강 초고강도 콘크리트 휨파괴형 부재의 강도 및 연성 평가에 관한 연구)

  • Yuh, Ok-Kyung;Bae, Baek-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.61-69
    • /
    • 2019
  • In this study, the flexural strength and curvature ductility factor of single and hybrid fiber reinforced ultra high strength concrete flexural members with conventional steel rebar were evaluated by experimental program with 3-UHSC beams. Test specimens were loaded by 4-pointed flexural loading. According to the test results, hybrid fiber reinforced UHPC test specimens had higher moment resisting capacity and ductility. For the safe design of hybrid fiber reinforced UHPC, test specimens were analyzed according to the sectional analysis method with material models suggested by K-UHPC design recommendation. Current K-UHPC design recommendation predict the moment resisting capacity of member conventionally and over-estimated the ductility.