• Title/Summary/Keyword: moment frame connections

Search Result 180, Processing Time 0.022 seconds

Welded plate and T-stub tests and implications on structural behavior of moment frame connections

  • Dong, P.;Kilinski, T.
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.35-50
    • /
    • 2002
  • A series of tests on simple-welded plate specimens (SWPS) and T-stub tension specimens simulating some of the joint details in moment frame connections were conducted in this investigation. The effects of weld strength mismatch and weld metal toughness on structural behavior of these specimens were considered under both static and dynamic loading conditions. Finite element analyses were performed by taking into account typical weld residual stress distributions and weld metal strength mismatch conditions to facilitate the interpretation of the test results. The major findings are as follows: (a) Sufficient specimen size requirements are essential in simulating both load transfer and constraint conditions that are relevant to moment frame connections, (b) Weld residual stresses can significantly elevate stress triaxiality in addition to structural constraint effects, both of which can significantly reduce the plastic deformation capacity in moment frame connections, (c) Based on the test results, dynamic loading within a loading rate of 0.02 in/in/sec, as used in this study, premature brittle fractures were not seen, although a significant elevation of the yield strength can be clearly observed. However, brittle fracture features can be clearly identified in T-stub specimens in which severe constraint effects (stress triaxiality) are considered as the primary cause, (d) Based on both the test and FEA results, T-stub specimens provide a reasonable representation of the joint conditions in moment frame connections in simulating both complex load transfer mode and constraint conditions.

Performance Evaluation of Inelastic Rotation Capacity of Special Moment Frame Connections (보-기둥 접합부를 가진 철근 콘크리트 모멘트 골조의 비탄성 회전 능력에 대한 평가)

  • Lee, Ki-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.688-691
    • /
    • 2004
  • This study summarizes results of a research project aimed at investigating the inelastic rotation capacity of beam-column joints of reinforced concrete moment frames. A total of 28 specimens were classified as special moment frame connections based on the design and detailing requirements in the ACI 318-99 provisions. Then, the acceptance criteria, originally defined for steel moment frame connections in the AISC-97 Seismic Provisions, were used to evaluate the joint connections of concrete moment frames. Twenty seven out of 28 test specimens that satisfy the design requirements for special moment frame structures provided sufficient strength and are ductile up to a plastic rotation of $3\%$ without any major degradation in strength.

  • PDF

Seismic Performance Evaluation According to Rotation Capacity of Connections for Intermediate Steel Moment Frames - I. Performance Evaluation (접합부 회전성능에 따른 중간 철골 모멘트 골조의 내진 성능 평가 - I 성능평가)

  • Moon, Ki Hoon;Han, Sang Whan;Ha, Seung Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.95-103
    • /
    • 2014
  • The current AISC341-10 standard specifiesa value of 0.02 radian for the minimum rotation capacity of connections for the intermediate steel moment frame system. However, despite of the advances realized in the domains of performance evaluation method and analysis method, research onthe minimum rotation capacity of the intermediate steel moment frame systemsatisfying the seismic performance has not been conducted in detail. In this study, the intermediate moment frame systemisdesigned with respect to current standards and the seismic performance in accordance with the rotational capacity of connections is evaluated using the seismic performance evaluation method presented in FEMA-P695. The minimum rotation capacity of intermediate steel moment frames required to satisfy seismic performance as well as the major design values affecting the seismic performance of moment frame areestimated. To that goal, the design parameters are selected and various target frames are designed. The analysis models of the main nonlinear elements are also developed for evaluating seismic performance. The resultsshow that the 20-story structure doesnot meet the seismic performance even if it satisfies the rotation capacity of 0.02 radian.

Effect of semi-rigid connections in improvement of seismic performance of steel moment-resisting frames

  • Feizi, M. Gholipour;Mojtahedi, A.;Nourani, V.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.467-484
    • /
    • 2015
  • Seismic performances of dual steel moment-resisting frames with mixed use of rigid and semi-rigid connections were investigated to control of the base shear, story drifts and the ductility demand of the elements. To this end, nonlinear seismic responses of three groups of frames with three, eight and fifteen story were evaluated. These frames with rigid, semi-rigid and combined configuration of rigid and semi-rigid connections were analyzed under five earthquake records and their responses were compared in ultimate limit state of rigid frame. This study showed that in all frames, it could be found a state of semi-rigidity and connections configuration which behaved better than rigid frame, with consideration of the base shear and story drifts criterion. Finally, some criteria were suggested to locate the best place of the semi-rigid connections for improvement of the seismic performance of steel moment-resisting frames.

A Study on the Flexibility of Semi-Rigid Steel Frames under Lateral Loadings( I ) (횡하중을 받는 반강접 철골 골조의 유연도에 관한 연구( I ) -접합부 해석모형을 중심으로-)

  • KANG, Cheol Kyu;HAN, Young Cheol;LEE, Gag Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.127-137
    • /
    • 1996
  • Connections as basic elements and an integrated part of a steel frame has an effect on the frame's performance. Conventional analysis and design techniques are based on either idealized fixed or pinned conditions. In fact, the use of rigid or pinned connection model in steel frame analysis serves the purpose of simplifying the analysis and design processes, but all connections used in current pratice possess stiffness and transfer moment which fall between the extreme cases of fully rigid and ideally pinned. To predict the behavior of the semi-rigid steel frames, it is necessary to predict the moment-rotation behavior of the beam-to-column connections. In this research, prediction equation for moment-rotation behavior of the beam-to-column connection is suggested and the effect of design parameters has investigated. Prediction model, in a nondimensional form shows the moment-rotation characteristic for connections. It is composed of the curve fitting power function using standardization constant K and 4 parameter $KM_o$, ${\theta}_0$, b, n based on the pretest result about moment-rotation behavior of connection.

  • PDF

Performance Evaluation of Inelastic Rotation Capacity of Reinforced Concrete Beam-Column Connections (철근콘크리트 보-기둥 접합부의 비탄성 회전 능력에 대한 성능 평가)

  • Lee, Ki-Hak;Woo, Sung-Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 2007
  • This study summarizes the results of a research project aimed at investigating the inelastic rotation capacity of beam-column connections of reinforced concrete moment frames. A total of 91 test specimens for beam-column joint connections were examined in detail, and 28 specimens were classified as special moment frame connections based on the design and detailing requirements in the ACI 318-02 Provisions. Then the acceptance criteria, originally defined for steel moment frame connections in the AISC-02 Seismic Provisions, were used to evaluate the joint connections of concrete moment frames. Twenty-seven out of 28 test specimens that satisfy the design requirements for special moment frame structures provide sufficient strength and are ductile up to a plastic rotation of 0.03 rad. without any major degradation in strength. Joint shear stress, column-to-beam flexural strength ratio, and transverse reinforcement ratio in a joint all play a key role in good performance of the connections.

Effect of connection rotation capacities on seismic performance of IMF systems

  • Han, Sang Whan;Moon, Ki-Hoon;Ha, Sung Jin
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.73-89
    • /
    • 2016
  • The seismic performance of moment frames could vary according to the rotation capacity of their connections. The minimum rotation capacity of moment connections for steel intermediate moment frames (IMF) was defined as 0.02 radian in AISC 341-10. This study evaluated the seismic performance of IMF frames with connections having a rotation capacity of 0.02 radian. For this purpose, thirty IMFs were designed according to current seismic design provisions considering different design parameters such as the number of stories, span length, and seismic design categories. The procedure specified in FEMA P695 was used for conducting seismic performance evaluation. It was observed that the rotation capacity of 0.02 radian could not guarantee the satisfactory seismic performance of IMFs. This study also conducted seismic performance evaluation for IMFs with connections having the rotation capacity of 3% and ductile connections for proposing the minimum rotation capacity of IMF connections.

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.

Cyclic testing of weak-axis steel moment connections

  • Lee, Kangmin;Li, Rui;Jung, Heetaek;Chen, Liuyi;Oh, Kyunghwan
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.507-518
    • /
    • 2013
  • The seismic performance of six types of weak-axis steel moment connections was investigated through cyclic testing of six full-scale specimens. These weak-axis moment connections were the column-tree type, WUF-B type, FF-W type, WFP type, BFP-B type and DST type weak-axis connections. The testing results showed that each of these weak-axis connection types achieved excellent seismic performance, except the WFP and the WUF-B types. The WFP and WUF-B connections displayed poor seismic performance because a fracture appeared prematurely at the weld joint due to stress concentrations. The column-tree type connection showed the best seismic behavior such that the story drift ratio could reach 5%.

Practical design guidlines for semi-continuous composite braced frames

  • Liew, J.Y. Richard;Looi, K.L.;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.213-230
    • /
    • 2001
  • This paper presents a simplified approach for the design of semi-continuous composite beams in braced frames, where specific attention is given to the effect of joint rotational stiffness. A simple composite beam model is proposed incorporating the effects of semi-rigid end connections and the nonprismatic properties of a 'cracked' steel-concrete beam. This beam model is extended to a sub-frame in which the restraining effects from the adjoining members are considered. Parametric studies are performed on several sub-frame models and the results are used to show that it is possible to correlate the amount of moment redistribution of semi-continuous beam within the sub-frame using an equivalent stiffness of the connection. Deflection equations are derived for semi-continuous composite beams subjected to various loading and parametric studies on beam vibrations are conducted. The proposed method may be applied using a simple computer or spreadsheet program.