• Title/Summary/Keyword: moment fields

Search Result 137, Processing Time 0.026 seconds

Optimum shape and length of laterally loaded piles

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.121-130
    • /
    • 2018
  • This study deals with optimum geometry design of laterally loaded piles in a Winkler's medium through the Fully Stressed Design (FSD) method. A numerical algorithm distributing the mass by means of the FSD method and updating the moment by finite elements is implemented. The FSD method is implemented here using a simple procedure to optimise the beam length using an approach based on the calculus of variations. For this aim two conditions are imposed, one transversality condition at the bottom end, and a one sided constraint for moment and mass distribution in the lower part of the beam. With this approach we derive a simple condition to optimise the beam length. Some examples referred to different fields are reported. In particular, the case of laterally loaded piles in Geotechnics is faced.

Theoretical Modeling and Dynamic Characteristics of a Cantilever IPMC Actuator (외팔보형 IPMC 구동기의 이론적 모델링과 구동특성)

  • Han, Dae-Woong;Lee, Seung-Yop;Cho, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1521-1526
    • /
    • 2008
  • IPMC(Ionic Polymer-Metal Comosite) exhibits large deformation, having great attention in many application fields. It generates bending moment by ion exchange polymer film. It can be quickly bended by the applied voltage across the plated electrode of the polymer film. In the present paper, we derive the theoretical modeling and dynamic analysis of bending motions of IPMC actuators using the Euler-Bernoulli beam theory. The theoretical model of a cantilever IPMC actuator estimates the moment produced by the applied voltage. The dynamic characteristics, including natural frequencies and frequency response, are calculated by the theoretical model, and they are compared with the experimental results and finite element analysis. It is shown that the mathematical modeling allows precise estimation to the voltage-driven motion of the cantilever IPMC in air.

  • PDF

Fully coulpled CMC modeling for three-dimensional turbulent nonpremixed syngas flame (CMC 모델을 이용한 난류 비예혼합 Syngas 화염장 해석)

  • Kim, Gun-Hong;Lee, Jung-Won;Kim, Yong-Mo;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.111-120
    • /
    • 2006
  • The fully coupled conditional moment closure(CMC) model has been developed to realistically simulate the structure of complex turbulent nonpremixed syngas flame, in which the flame structure could be considerablyl influenced by the turbulence, transport history, and heat transfer as well. In order to correctly account for the transport effect, the CMC transport equations fully coupled with the flow and mixing fields are numerically solved. The present CMC approach has successfully demonstrated the capability to realistically predict the detailed structure and the overall combustion characteristics. The numerical results obtained in this study clearly reveal the importance of the convective and radiative heat transfer in the precise structure and NOx emission of the present confined combustor with a cooling wall.

  • PDF

Analysis on Harmonics Characteristics of ELF Magnetic Fields Generated by Electric Appliances (가전기기 발생 극저주파 자계 고조파 특성 해석)

  • Min Suk-Won;Song Ki-Hyun;Yang Kwang-Ho;Ju Mun-No
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • With biological effects by ELF(Extremely Low Frequency) magnetic field generated from power system, the transient magnetic field from electric appliances is a major issue presently. In this paper, we measured magnetic field distributions around electric appliances in view of harmonics and analyzed them by the use of an equivalent magnetic dipole moment method. This method was applied to 19 types of appliances, and their equivalent magnetic dipole moments and harmonic components were determined. The results show that this method is applicable to many appliances and the higher frequency magnetic field may induce higher current inside living bodies.

Numerical Simulation of Advection and Diffusion using the Local Wind Model in Pusan Coastal Area, Korea (부산 연안역에서의 국지풍모델을 이용한 이류확산 수치모의)

  • 김유근;이화운;전병일
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.29-41
    • /
    • 1996
  • The two-stage numerical model was used to study the relation between three-dimensional local wind model, advection/diffusion model of random walk method and second moment method on Pusan coastal area. The first stage is three dimensional time-dependent local wind model which gives the wind field and vertical dirrusion coefficient. The second stage is advection/diffusion model which uses the results of the first stage as input data. First, wind fields on Pusan coastal area for none synoptic scale wind showed typical land and sea breeze circulation, and convergence zone occured at 1200LST in northern of domain, in succession, moved northward of domain. Emissions from Sinpyeong industrial district were trasnported toward the inland by sea breeze during daytime, and reached the end part of domain about 1800LST. During nighttime, emissions return to sea by land breeze and vertical diffusion also contributes to upward transport. In order to use this model for forecast of air pollution concentration on the Pusan coastal area, it is necessary that computed value must be compared with measured value and wind fields model must also be dealt in detail.

  • PDF

Tilt analysis of optical pickup actuator using coupled fields analysis (연성해석을 이용한 광픽업 구동기 경사 해석)

  • 신창훈;김철진;이경택;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.684-687
    • /
    • 2002
  • In optical disk drive(ODD), pickup actuator, which comprises a key part of an optical disk drive equipment. must be thin. compact, and high sensitive. Low tilt is also an important requirement for the actuator, since optical disks are to high density. This tilt occurs from around the axis parallel to the tangential and radial direction of the disk. The main reason of the moment is the coupling effect between focus driving system and tracking driving system. This paper analyzed tut quantity due to focusing and tracking force through coupled fields analysts with electromagnetic analysis and structural analysis.

  • PDF

Decaying temperature and dynamic response of a thermoelastic nanobeam to a moving load

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • The decaying temperature and dynamic response of a thermoelastic nanobeam subjected to a moving load has been investigated in the context of generalized theory of nonlocal thermoelasticity. The transformed distributions of deflection, temperature, axial displacement and bending moment are obtained by using Laplace transformation. By applying a numerical inversion method, the results of these fields are then inverted and obtained in the physical domain. Also, for a particular two models, numerical results are discussed and presented graphically. Some specific and special results are derived from the current study.

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR LINEAR RANDOM FIELD GENERATED BY NEGATIVELY ASSOCIATED RANDOM FIELD

  • Ryu, Dae-Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.507-517
    • /
    • 2009
  • We prove a functional central limit theorem for a linear random field generated by negatively associated multi-dimensional random variables. Under finite second moment condition we extend the result in Kim, Ko and Choi[Kim,T.S, Ko,M.H and Choi, Y.K.,2008. The invariance principle for linear multi-parameter stochastic processes generated by associated fields. Statist. Probab. Lett. 78, 3298-3303] to the negatively associated case.

  • PDF

Susceptometry Application of Portable HTS SQUID-Based System

  • Timofeev, V.P.;Kim, C.G.;Shnyrkov, V.I.
    • Journal of Magnetics
    • /
    • v.3 no.3
    • /
    • pp.86-88
    • /
    • 1998
  • A portable RF HTS SQUID-based susceptometer was used for small size magnetized sample testing in weak DC (up to 200A/m) and AC (up to 4 A/m) magnetic fields. The system resolution for the magnetic moment is of the order of $1.6{\times}10^{-10} A.m^2$. The measured DC susceptibility of a tested sample agrees well with the value obtained by using a commercial liquid helium susceptometer.

  • PDF

Hysteresis Loops, Critical Fields and Energy Products for Exchange-spring Hard/soft/hard Trilayers

  • Chen, B.Z.;Yan, S.;Ju, Y.Z.;Zhao, G.P.;Zhang, X.C.;Yue, M.;Xia, J.
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.31-39
    • /
    • 2015
  • Macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by a three-dimensional (3D) model for exchange-coupled Sm-Co/${\alpha}-Fe$/Sm-Co trilayers with in-plane collinear easy axes. These results are carefully compared with the popular one-dimensional (1D) micromagnetic models and recent experimental data. It is found that the results obtained from the two methods match very well, especially for the remanence and coercivity, justifying the calculations. Both nucleation and coercive fields decrease monotonically as the soft layer thickness $L^s$ increases while the largest maximum energy product (roughly 50 MGOe) occurs when the thicknesses of hard and soft layers are 5 nm and 15 nm, respectively. Moreover, the calculated angular distributions in the thickness direction for the magnetic moments are similar. Nevertheless, the calculated nucleation and pinning fields as well as the energy products by 3D OOMMF are systematically smaller than those given by the 1D model, due mainly to the stray fields at the corners of the films. These demagnetization fields help the magnetic moments at the corners to deviate from the previous saturation state and facilitate the nucleation. Such an effect enhances as $L^s$ increases. When the thicknesses of hard and soft layers are 10 nm and 20 nm, respectively, the pinning field difference is as large as 30%, while the nucleation fields have opposite signs.