• Title/Summary/Keyword: moment around the X axis

Search Result 9, Processing Time 0.016 seconds

Design of boundary combined footings of trapezoidal form using a new model

  • Rojas, Arnulfo Luevanos
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.745-765
    • /
    • 2015
  • This paper presents the design of reinforced concrete combined footings of trapezoidal form subjected to axial load and moments in two directions to each column using a new model to consider soil real pressure acting on the contact surface of the footing; such pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column. The classical model considers an axial load and moment around the axis "X" (transverse axis) applied to each column, and when the moments in two directions are taken into account, the maximum pressure throughout the contact surface of the footing is considered the same. The main part of this research is that the proposed model considers soil real pressure and the classical model takes into account the maximum pressure, and also is considered uniform. We conclude that the proposed model is more suited to the real conditions and is more economical.

A new model for T-shaped combined footings part II: Mathematical model for design

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.61-69
    • /
    • 2018
  • The first part shows the optimal contact surface for T-shaped combined footings to obtain the most economical dimensioning on the soil (optimal area). This paper presents the second part of a new model for T-shaped combined footings, this part shows a the mathematical model for design of such foundations subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing with one or two property lines restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. To illustrate the validity of the new model, a numerical example is presented to obtain the design for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems.

Minimum area for circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression

  • Inocencio Luevanos-Soto;Arnulfo Luevanos-Rojas;Victor Manuel Moreno-Landeros;Griselda Santiago-Hurtado
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.201-217
    • /
    • 2024
  • This study aims to develop a new model to obtain the minimum area in circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression, i.e., a part of the contact area of the footing is subject to compression and the other there is no pressure (pressure zero). The new model is formulated from a mathematical approach based on a minimum area, and it is developed by integration to obtain the axial load "P", moment around the X axis "Mx" and moment around the Y axis "My" in function of σmax (available allowable soil pressure) R (radius of the circular footing), α (angle of inclination where the resultant moment appears), y0 (distance from the center of the footing to the neutral axis measured on the axis where the resultant moment appears). The normal practice in structural engineering is to use the trial and error procedure to obtain the radius and area of the circular footing, and other engineers determine the radius and area of circular footing under biaxial bending supported on elastic soils, but considering a concentric column and the contact area with the ground works completely in compression. Three numerical problems are given to determine the lowest area for circular footings under biaxial bending. Example 1: Column concentric. Example 2: Column eccentric in the direction of the X axis to 1.50 m. Example 3: Column eccentric in the direction of the X axis to 1.50 m and in the direction of the Y axis to 1.50 m. The new model shows a great saving compared to the current model of 44.27% in Example 1, 50.90% in Example 2, 65.04% in Example 3. In this way, the new minimum area model for circular footings will be of great help to engineers when the column is located on the center or edge of the footing.

Optimization for trapezoidal combined footings: Optimal design

  • Arnulfo Lueanos-Rojas
    • Advances in concrete construction
    • /
    • v.16 no.1
    • /
    • pp.21-34
    • /
    • 2023
  • This work presents a complete optimal model for trapezoidal combined footings that support a concentric load and moments around of the "X" and "Y" axes in each column to obtain the minimum area and the minimum cost. The model presented in this article considers a pressure diagram that has a linear variation (real pressure) and the equations are not limited to some cases. The classic model takes into account a concentric load and the moment around of the "X" axis (transverse axis) that is applied due to each column, i.e., the resultant force is located at the geometric center of the footing on the "Y" axis (longitudinal axis), and when the concentric load and moments around of the "X" and "Y" axes act on the footing is considered the uniform pressure applied on the contact surface of the footing, and it is the maximum pressure. Four numerical problems are presented to find the optimal design of a trapezoidal combined footing under a concentric load and moments around of the "X" and "Y" axes due to the columns: Case 1 not limited in the direction of the Y axis; Case 2 limited in the direction of the Y axis in column 1; Case 3 limited in the direction of the Y axis in column 2; Case 4 limited in the direction of the Y axis in columns 1 an 2. The complete optimal design in terms of cost optimization for the trapezoidal combined footings can be used for the rectangular combined footings considering the uniform width of the footing in the transversal direction, and also for different reinforced concrete design codes, simply by modifying the resisting capacity equations for moment, for bending shear, and for the punching shear, according to each of the codes.

Modeling for the strap combined footings Part II: Mathematical model for design

  • Yanez-Palafox, Juan Antonio;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.109-121
    • /
    • 2019
  • This paper presents the second part of the modeling for the strap combined footings, this part shows a mathematical model for design of strap combined footings subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing for one and/or two property lines of sides opposite restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The first part shows the optimal contact surface for the strap combined footings to obtain the most economical dimensioning on the soil (optimal area). The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. A numerical example is presented to obtain the design of strap combined footings subject to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems and it can also be used for rectangular and T-shaped combined footings.

A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models

  • Luevanos-Rojas, Arnulfo;Barquero-Cabrero, Jose Daniel;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.417-437
    • /
    • 2017
  • This paper shows a comparative study for design of reinforced concrete boundary combined footings of trapezoidal and rectangular forms supporting two columns and each column transmits an axial load and a moment around of the axis X (transverse axis of the footing) and other moment around of the axis Y (longitudinal axis of the footing) to foundation to obtain the most economical combined footing. The real soil pressure acting on the contact surface of the footings is assumed as a linear variation. Methodology used to obtain the dimensions of the footings for the two models consider that the axis X of the footing is located in the same position of the resultant, i.e., the dimensions is obtained from the position of the resultant. The main part of this research is to present the differences between the two models. Results show that the trapezoidal combined footing is more economical compared to the rectangular combined footing. Therefore, the new model for the design of trapezoidal combined footings should be used, and complies with real conditions.

Optimal area for rectangular isolated footings considering that contact surface works partially to compression

  • Vela-Moreno, Victor Bonifacio;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo;Martinez-Aguilar, Carmela
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.561-573
    • /
    • 2022
  • This paper presents a new model to obtain the minimum area of the contact surface for rectangular isolated footings, considering that the contact surface works partially to compression (a part of the contact surface of the footing is subjected to compression and the other is not in compression or tension). The methodology is developed by integration to obtain the axial load "P", moment around the X axis "Mx" and moment around the Y axis "My". This document presents the simplified and precise equations of the four possible cases of footing subjected to uniaxial bending and five possible cases of footing subjected to biaxial bending. The current model considers the contact area of the footing that works totally in compression, and other models consider the contact area that works partially under compression and these are developed by very complex iterative processes. Numerical examples are presented to obtain the minimum area of rectangular footings under an axial load and moments in two directions, and the results are compared with those of other authors. The results show that the new model presents smaller areas than the other authors presented.

Optimal dimensioning for the corner combined footings

  • Lopez-Chavarria, Sandra;Luevanos-Rojas, Arnulfo;Medina-Elizondo, Manuel
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.169-183
    • /
    • 2017
  • This paper shows optimal dimensioning for the corner combined footings to obtain the most economical contact surface on the soil (optimal area), due to an axial load, moment around of the axis "X" and moment around of the axis "Y" applied to each column. The proposed model considers soil real pressure, i.e., the pressure varies linearly. The classical model is developed by trial and error, i.e., a dimension is proposed, and after, using the equation of the biaxial bending is obtained the stress acting on each vertex of the corner combined footing, which must meet the conditions following: 1) Minimum stress should be equal or greater than zero, because the soil is not withstand tensile. 2) Maximum stress must be equal or less than the allowable capacity that can be capable of withstand the soil. Numerical examples are presented to illustrate the validity of the optimization techniques to obtain the minimum area of corner combined footings under an axial load and moments in two directions applied to each column.

Study of a Variable Single-tracked Crawler for Overcoming Obstacles (가변형 단일 궤도를 이용한 장애물 극복방법에 관한 연구)

  • Kim, Jee-Hong;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.391-395
    • /
    • 2010
  • In our paper, we propose an asymmetric single-tracked wheel system, and describe its structure and the method for maintaining the length of a transformable track system. And the method is reducing the gap of lengths. Therefore, we propose an efficient structure for transforming and explain motions with kinematics. Our transformable shape single-tracked mobile system has an advantage to overcome an obstacle or stairs by the variable arms in the single unity track system. But we will make the variable shape of tracked system get a drive that has a force to stand against a wall. In this case, we can consider this system to a rigid body and have a notice that this single tracked system is able to get vary shape with the variable arm angle. Considering forces balance along x-axis and y-axis, and moments balance around the center of the mass we have. If this rigid body is standing against a wall and doesn't put in motion, the force of flat ground and the rigid body sets an equal by a friction. In the same way, the force of a wall and the rigid sets an equal by a friction.