• 제목/요약/키워드: molybdenum wires

검색결과 6건 처리시간 0.021초

Phase Transformation by the Oxidation of Air-passivated W and Mo Nanopowders Produced by an Electrical Explosion of Wires

  • Kwon, Young-Soon;Kim, Ji-Soon;A. Gromov, Alexander;Hong, Moon-Hee
    • 한국분말재료학회지
    • /
    • 제11권2호
    • /
    • pp.130-136
    • /
    • 2004
  • The passivation and oxidation process of tungsten and molybdenum narlopowders, produced by electrical explosion of wires was studied by means of FE-SEM, XPS. XRD, TEM, DIA-TGA and sire distribution analysis. In addition, the phase transformation of W and Mo nanopowders under oxidation in air was investigated. A chemical process is suggested for the oxidation of W and Mo nano-particles after a comprehensive testing of passivated and oxidized powders.

Microstructures and Properties of Molybdenum Wire Doped with Minim $La_2O_3$

  • Li, DaCheng;Bu, Chunyang;Zhu, Yong-An;Wang, Jin
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1015-1016
    • /
    • 2006
  • The microstructures and properties of pure molybdenum wire and $Mo-La_2O_3$ alloy wire annealed at different temperatures are investigated systematically in this paper. It is shown that the recrystallization temperature, toughness and strength at room temperature of this wire was increased greatly by addition of $La_2O_3$. The room temperature embrittlement of this wire annealed at high temperature is improved remarkably.

  • PDF

The Effect of Mo Addition on Oxygen Vacancies in the Oxide Scale of Ferritic Stainless Steel for SOFC Interconnects

  • Dae Won Yun;Hi Won Jeong;Seong Moon Seo;Hyung Soo Lee;Young Soo Yoo
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.33-40
    • /
    • 2024
  • The concentration and diffusion coefficient of oxide ion vacancies in the oxide scale formed on Fe-22Cr-0.5Mn ferritic stainless steel with and without molybdenum (Mo) was measured at 800℃ by the electrochemical polarization method. After pre-oxidation for 100 h in ambient air at 800 ℃, the oxide scale on one side was completely removed with sandpaper. A YSZ plate was placed on the side where the oxide scale remained. Platinum (Pt) meshes were attached on the top of the YSZ plate and the side where the oxide scale was removed. Changes in electrical current were measured after applying an electrical potential through Pt wires welded to the Pt meshes. The results were interpreted by solving the diffusion equation. The diffusion coefficient and concentration of oxide ion vacancy decreased by 30% and 70% in the specimen with Mo, respectively, compared to the specimen without Mo. The oxide ion vacancy concentration of chromia decreased due to the addition of Mo.

FGB SAW 용접부 물성에 미치는 Ni과 Mo의 영향에 관한 연구 (Effect of Ni and Mo on Mechanical Properties of Submerged Arc Welds with Flexible Glasswool Backing)

  • 지춘호;최준태;김대주
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.55-55
    • /
    • 2009
  • FGB(Flexible Glasswool Backing) Submerged Arc Welding has been one of the main welding processes for one side butt welding in shipbuilding industries, which can efficiently improve the welding productivity by the addition of a supplementary filler metal into the molten weld pool. As recent ships have become larger in size, the application of high tensile and higher grade of steels has been continuously increased. Single pass FGB SA welding process accompanies such a high heat input when welding thick plates that the mechanical properties of weld metal can be dramatically degraded. This study has been performed in order to obtain high toughness and tensile properties of high heat input FGB SA welds, and to evaluate the effect of alloy elements on their mechanical properties. To complete welding 25mm-thick EH36 grade steel plate by single pass, 1.2mm diameter and 1.0mm long cut wires has been distributed in the groove before welding, and three different test coupons have been made using C-1.5%Mn, C-1.8%Mn-0.5%Mo, and C-1.4%Mn-1.7%Ni cut wires to investigate the influence of nickel(Ni) and molybdenum(Mo) on the mechanical properties of welds. Test results showed that the addition of Ni and Mo effectively promotes the formation of Acicular Ferrite(AF), while significantly reducing the amount of Grain Boundary Ferrite(GBF) in weld metal microstructures, which resulted in a beneficial effect on low temperature impact toughness and strength.

  • PDF

와이어전극의 도금재료가 W-EDM 가공성에 미치는 영향 (The Coating Materials of Electrode Materials on Machinability of W-EDM)

  • 김창호;허관도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.735-738
    • /
    • 2000
  • The characteristics of wire electrical discharge machining (WEDM) are governed by many factors such as the power supply type, operating condition and electrode material. This work deals with the effect of wire electrode materials on the machining characteristics such as, metal removal rate, surface characteristics and surface roughness during WEDM A wire's thermal physical properties are melting point, electrical conductivity and vapor pressure. One of the desired qualities of wire is a low melting point and high vapor pressure to help expel the contaminants from the gap. They are determined by the mix of alloying elements (in the case of plain brass and coated wire) or the base core material(i.e. molybdenum). Experiments have been conducted regarding the choice of suitable wire electrode materials and influence of the properties of these materials on the machinability and surface characteristics in WEDM, the experimental results are presented and discussed from their metallurgical aspect. And the coating effect of various alloying elements(Au, Ag, Cu, Zn, Cr, Mn, etc.) to the Cu or 65-35 brass core on them was reviewed also. The removal rate of some coated wires are higher than that of 65-35 brass electrode wire because the wire is difficult to break due to the wire cooling effect of Zn evaporation latent heat and the Zn oxide on the surface is effective in preventing short circuit. The removal rate increases with increasing Zn content from 35, 40 and Zn coated wire

  • PDF

Creq/Nieq비에 따른 AISI 304L 및 AISI 316L 스테인리스강 용접부의 미세조직 및 전기화학적 양극분극 평가 (Evaluations of Microstructure and Electrochemical Anodic Polarization of AISI 304L and AISI 316L Stainless Steel Weld Metals with Creq/Nieq Ratio)

  • 김연희;장아영;강동훈;고대은;신용택;이해우
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1090-1096
    • /
    • 2010
  • This pitting corrosion study of welded joints of austenitic stainless steels (AISI 304L and 316L) has addressed the differentiating solidification mode using three newly introduced filler wires with a flux-cored arc welding process (FCAW). The delta ferrite (${\delta}$-ferrite) content in the welded metals increased with an increasing equivalent weight ratio of chromium/nickel ($Cr_{eq}/Ni_{eq}$). Ductility dip cracking (DDC) was observed in the welded metal containing ferrite with none of AISI 304L and 0.1% of AISI 316L. The potentiodynamic anodic polarization results revealed that the $Cr_{eq}/Ni_{eq}$ ratio in a 3.5% NaCl solution didn't much affect the pitting potential ($E_{pit}$). The AISI 316L welded metals with ${\ddot{a}}$-ferrite content of over 10% had a superior $E_{pit}$ value. Though the AISI 316L welded metal with 0.1% ferrite had larger molybdenum contents than AISI 304L specimens, it showed a similar $E_{pit}$ value because the concentration of chloride ions and the corrosion product induced severe damage near the DDC.