• Title/Summary/Keyword: molybdenum disulfide

Search Result 45, Processing Time 0.03 seconds

Study on Mechanical Properties Modification of Styrene Butadiene Rubber Composites Filling with Graphene and Molybdenum Disulfide

  • Xu, Li Xiang;Sohn, Mi Hyun;Kim, Yu Soo;Jeong, Ye Rin;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.52-59
    • /
    • 2019
  • Styrene-butadiene rubber (SBR) composites, incorporated with graphene, molybdenum disulfide and their hybrid in different filling ratio, were fabricated by a two roll-mill. The dispersion states of all the samples' matrix were employed by carbon black dispersion tester. The curing properties of the pre-vulcanized rubber composites were investigated, after molding by heating press machine, the tensile strength, storage modulus, friction coefficient, the swelling property had also been tested according to ASTM. The composite G1M10 (filling with 1 phr graphene and 10 phr molybdenum) showed the best mechanical properties and viscoelastic properties in this research with a better filler dispersion state and more compact matrix structure.

A Study on the Characteristics of 2-Dimensinal Molybdenum Disulfide Thin Films formed on Sapphire Substrates by DC Sputtering and Rapid Thermal Annealing (DC 스퍼터링 및 급속 열처리 공정을 이용한 사파이어 기판상에 형성된 2차원 황화몰리브덴 박막의 특성에 관한 연구)

  • Qi, Yuanrui;Ma, Sang Min;Jeon, Yongmin;Kwon, Sang Jik;Cho, Eou-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.105-109
    • /
    • 2022
  • For the realization of higher reliable transition metal dichalcogenide layer, molybdenum disulfide was formed on sapphire substrate by direct current sputtering and subsequent rapid thermal annealing process. Unlike RF sputtered MoS2 thin films, DC sputtered showed no irregular holes and protrusions after annealing process from scanning electron microscope images. From atomic force microscope results, it was possible to investigate that surface roughness of MoS2 thin films were more dependent on DC sputtering power then annealing temperature. On the other hand, the Raman scattering spectra showed the dependency of significant E12g and A1g peaks on annealing temperatures.

Tribological Properties of Co-Sputtered $MoS_2$ Films

  • Sagara, K.;Yamazaki, T.;Nishimura, M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.145-146
    • /
    • 2002
  • Tribological properties of co-sputtered Molybdenum disulfide $(MoS_2)/Carbon\;(C)$ films were studied and compared with those of sputtered $MoS_2$ films. Friction tests were carried out using pin-on-disk friction testers to evluated their friction and wear behaviors in a vacuum ($10^{-5}Pa$), air and humid air of 30, 50, 80% RH. $MoS_2/C$ (14%) composite films exhibited about 9 times longer wear life in a vacuum and about 6 times longer wear life in dry air than $MoS_2$ films did. They also showed stable low friction coefficient of about 0.02 in a vacuum. In humid air, however, $MoS_2/C$ composite films hardly showed good tribological properties.

  • PDF

A Study on the Durability Characteristics of an Air-lubricated Bump Foil Journal Bearing (공기윤활 범프포일 저널 베어링의 내구성 특성에 관한 연구)

  • 이용복;김태호;김창호;이남수;장건희
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2002
  • This paper describes a durability characteristics of an air-lubricated bump foil journal bearing for high speed turbomachinerys at room temperature. At first, lift-off test and load capacity test were performed to understand the general characteristics of an air-lubricated bump foil Journal bearing. A 52 N weighted bump foil bearing sleeve was lilted off from a rotating Journal at about 3,000 rpm, and produced a load capacity of 500 N at an operating speed of 15,000 rpm. The next was 500 cycles lift-off test with an air-lubricated bump foil journal bearing that had a molybdenum disulfide(MoS$_2$) solid lubricant coated top foil. Data from measuring bearing torque and temperature and the observation of rubbing surfAce were included in results. Therefore the results of this work will aid in proving durability of air-lubricated bump foil journal bearings.

A Study on the Durability Characteristics of an Air-lubricated Bump Foil Journal Bearing (공기윤활 범프포일 저널 베어링의 내구성 특성에 관한 연구)

  • 김태호;이용복;김창호;이남수;장건희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.212-219
    • /
    • 2001
  • This paper describes a durability characteristics of an air-lubricated bump foil journal bearing for high speed turbomachinerys at room temperature. At first, lift-off test and load capacity test were performed to understand the general characteristics of an air-lubricated bump foil journal bearing. A 52N weighted bump foil bearing sleeve was lifted off from a rotating journal at about 3,000rpm, and produced a load capacity of 500N at an operating speed of 15,000rpm. The next was 500 cycles lift-off test with an air-lubricated bump foil journal bearing that had a molybdenum disulfide(MoS$_2$) solid lubricant coated top foil. Data from measuring bearing torque and temperature and the observation of rubbing surface were included in results. Therefore the results of this work will aid in proving durability of air-lubricated bump foil journal bearings.

  • PDF

Size Effects of MoS2 on Hydrogen and Oxygen Evolution Reaction

  • Ghanashyam, Gyawali;Jeong, Hae Kyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.120-127
    • /
    • 2022
  • Molybdenum disulfide (MoS2) has been widely used as a catalyst for the bifunctional activities of hydrogen and oxygen evolution reactions (HER and OER). Here, we investigated size dependent HER and OER performance of MoS2. The smallest size (90 nm) of MoS2 exhibits the lowest overpotential of -0.28 V at -10 mAcm-2 and 1.52 V at 300 mAcm-2 with the smallest Tafel slopes of 151 and 176 mVdec-1 for HER and OER, respectively, compared to bigger sizes (2 ㎛ and 6 ㎛) of MoS2. The better HER and OER performance is attributed to high electrochemical active surface area (6 × 10-4 cm2) with edge sites and low charge transfer resistance (18.1 Ω), confirming that the smaller MoS2 nanosheets have the better catalytic behavior.

Study on the Oil Seal Application Using Polytetrafluoroethylene Composites (Polytetrafluoroethylene 복합재료를 이용한 오일씰 응용에 관한 연구)

  • Ha, Ki-Ryong;Lee, Jong-Cheol;Lee, Young-Seok
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.32-39
    • /
    • 2010
  • The mechanical properties of PTFE 100%, PTFT 90% + carbon black 10%, PTFE 85% + glass fiber 15%, PTFE 80% + glass fiber 15% + molybdenum disulfide ($MoS_2$) 5%, PTFE 75% + glass fiber 25%, and PTFE 75% + carbon black 18% + graphite 7% composites were investigated in this study. The differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to examine the heat of fusion(${\Delta}H_f$) and thermal stability of the composites. Also, the wear surface and wear volume of PTFE lip seal were examined using the durability test. Wear surface was observed using scanning electron microscope (SEM). It was found that the hardness, wear resistance and durability were enhanced by adding glass fiber and molybdenum disulfide into pure PTFE, but tensile strength and elongation were decreased. According to the experimental results, the composite (PTFE + 15% glass fiber + 5% molybdenum disulfide) showed the best properties for applying to oil-seal among six types of PTFE composites.

Schottky Barrier Free Contacts in Graphene/MoS2 Field-Effect-Transistor

  • Qiu, Dongri;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.209.2-209.2
    • /
    • 2015
  • Two dimensional layered materials, such as transition metal dichalcogenides (TMDs) family have been attracted significant attention due to novel physical and chemical properties. Among them, molybdenum disulfide ($MoS_2$) has novel physical phenomena such as absence of dangling bonds, lack of inversion symmetry, valley degrees of freedom. Previous studies have shown that the interface of metal/$MoS_2$ contacts significantly affects device performance due to presence of a scalable Schottky barrier height at their interface, resulting voltage drops and restricting carrier injection. In this study, we report a new device structure by using few-layer graphene as the bottom interconnections, in order to offer Schottky barrier free contact to bi-layer $MoS_2$. The fabrication of process start with mechanically exfoliates bulk graphite that served as the source/drain electrodes. The semiconducting $MoS_2$ flake was deposited onto a $SiO_2$ (280 nm-thick)/Si substrate in which graphene electrodes were pre-deposited. To evaluate the barrier height of contact, we employed thermionic-emission theory to describe our experimental findings. We demonstrate that, the Schottky barrier height dramatically decreases from 300 to 0 meV as function of gate voltages, and further becomes negative values. Our findings suggested that, few-layer graphene could be able to realize ohmic contact and to provide new opportunities in ohmic formations.

  • PDF

Layer-by-layer Control of MoS2 Thickness by ALET

  • Kim, Gi-Hyeon;Kim, Gi-Seok;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.234.1-234.1
    • /
    • 2015
  • Molybdenum disulfide (MoS2)는 van der Waals 결합을 통한 층상구조의 물질로써 뛰어난 물리화학적, 기계적 특성으로 Field Effect Transistors (FETs), Photoluminescence, Photo Detectors, Light Emitters 등의 많은 분야에서 연구가 보고 되어지고 있는 차세대 2D-materials이다. 이처럼 MoS2 가 다양한 범위에 응용될 수 있는 이유는 layer 수가 증가함에 따라 1.8 eV의 direct band gap 에서 1.2 eV 의 indirect band-gap으로 특성이 변화할 뿐만 아니라 다양한 고유의 전기적 특성을 지니고 있기 때문이다. 그러나 MoS2 는 원자층 단위의 layer control 이 어렵다는 이유로 다양한 전자소자 응용에 많은 제약이 보고 되어졌다. 본 연구에서는 MoS2 의 layer를 control 하기 위해 ICP system 에서 mesh grid 를 삽입하여 Cl2 radical을 효과적으로 adsorption 시킨 뒤, Ion beam system 에서 Ar+ Ion beam 을 통해 한 층씩 제거하는 방식의 atomic layer etching (ALE) 공정을 진행하였다. ALE 공정시 ion bombardment 에 의한 damage 를 최소화하기 위해 Quadruple Mass Spectrometer (QMS) 를 통한 에너지 분석으로 beam energy 를 20 eV에서 최적화 할 수 있었고, Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy(AFM) 분석을 통해 ALE 공정에 따른 MoS2 layer control 가능 여부를 증명할 수 있었다.

  • PDF

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.356.1-356.1
    • /
    • 2014
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reduction-sulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of mono-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF