• Title/Summary/Keyword: molybdenum(Mo)

Search Result 458, Processing Time 0.028 seconds

General Remarks of Geneses of Tungsten Ore Deposits Based on Tungsten Deposits of China (중국의 중석광상을 근거로한 중석광상 성인 총론)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.287-303
    • /
    • 1995
  • Tungsten ore deposits in China show clearly their relationship between granitoids and orebodies. All kinds of different tungsten ore deposits, having the largest ore reserves in the world, occur in China. Major tungsten deposits in 1950'years were locally confined in three provinces such as Jiangxi, Hunan and Guangdong. However, the major tungsten ore deposits are replaced by new tungsten deposits such as Sandahozhuang, Xingluokeng, Shizhuan and Daminghsan deposit which may be larger than the previous major deposits. Tungsten ore deposits of China exhibit obviously the granitoid was the ore-bringer to form tungsten ore deposits. The wolframite-bearing quarz veins in China indicate that tungsten mineralization took place by crystallization of wolframite preferentially unless $Ca^{{+}{+}}$ was introduced from outside into the magma-origin-fluid, since it is understood that the scheelite in the Sangdong ore deposit was preferentially precipitated, because of chemical affinity, from the tungsten fluid in which Fe and Ca ions were as sufficient as to form magnetite, wolframite and scheelite. Tungsten deposits in the world are divided into two systems; W-Mo-Sn system and W-Mo system. Most of tungsten deposits in China dated to about 196-116 Ma belong to the W-Mo-Sn system, while late Cretaceous tungsten deposits such as the Sangdong deposit in Korea belongs to the W-Mo system. The genetic order of tin-tungsten-molybdenum mineralization observed in the Moping tungsten mine in China and the Sangdong in Korea may be attributed to volatile pressures in the same magma chamber. It is assumed from ages of tungsten mineralizations that ore elements such as tin, tungsten and molybdenum might be generated periodically by nuclear fission and fusion in a part of the mantle and the element generated was introduced into the magma chamber. The periodical generation of elements had determined association, depletion and enrichment of tin and molybdenum in tungsten mineralization and it results in little association of cassiterite in tungsten deposit of late Cretaceous ages. Different mechanism of emplacement of the ore-bearing magma has brought various genetic types of tungsten deposits as shown in China and the world.

  • PDF

Direct Methanation of Syngas over Activated Charcoal Supported Molybdenum Catalyst (활성탄 담지 몰리브덴 촉매를 이용한 합성가스 직접 메탄화 반응)

  • KIM, SEONG-SOO;LEE, SEUNG-JAE;PARK, SUNG-YOUL;KIM, JIN-GUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.419-428
    • /
    • 2020
  • The kinetics of direct methanation over activated charcoal-supported molybdenum catalyst at 30 bar was studied in a cylindrical fixed-bed reactor. When the temperature was not higher than 400℃, the CO conversion increased with increasing temperature according to the Arrhenius law of reaction kinetics. While XRD and Raman analysis showed that Mo was present as Mo oxides after reduction or methanation, TEM and XPS analysis showed that Mo2C was formed after methanation depending on the loading of Mo precursor. When the temperature was as high as 500℃, the CO conversion was dependent not only on the Arrhenius law but also on the catalyzed reaction by nanoparticles, which came off from the reactor and thermocouple by metal dusting. These nanoparticles were made of Ni, Fe, Cr and alloy, and attributed to the formation of carbon deposit on the wall of the reactor and on the surface of the thermocouple. The carbon deposit consisted of amorphous and disordered carbon filaments.

Molybdenum Oxides as Diffusion Barrier Layers against MoSe2 Formation in A Nonvacuum Process for CuInSe2 Solar Cells (비진공법 CuInSe2 태양전지에서 MoSe2의 생성을 억제하기 위한 산화 몰리브데늄 확산장벽 층)

  • Lee, Byung-Seok;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.85-90
    • /
    • 2015
  • Two-step processes for preparing $Cu(In,Ga)Se_2$ absorber layers consist of precursor layer formation and subsequent annealing in a Se-containing atmosphere. Among the various deposition methods for precursor layer, the nonvacuum (wet) processes have been spotlighted as alternatives to vacuum-based methods due to their potential to realize low-cost, scalable PV devices. However, due to its porous nature, the precursor layer deposited on Mo substrate by nonvacuum methods often suffers from thick $MoSe_2$ formation during selenization under a high Se vapor pressure. On the contrary, selenization under a low Se pressure to avoid $MoSe_2$ formation typically leads to low crystal quality of absorber films. Although TiN has been reported as a diffusion barrier against Se, the additional sputtering to deposit TiN layer may induce the complexity of fabrication process and nullify the advantages of nonvacuum deposition of absorber film. In this work, Mo oxide layers via thermal oxidation of Mo substrate have been explored as an alternative diffusion barrier. The morphology and phase evolution was examined as a function of oxidation temperature. The resulting Mo/Mo oxides double layers were employed as a back contact electrode for $CuInSe_2$ solar cells and were found to effectively suppress the formation of $MoSe_2$ layer.

Oxygen Ring Formation Reaction of Mono-Oxo-Bridged Binuclear Molybdenum(V) Complex (II). Reaction of $[Mo_2O_3(Phen)_2(NCS)_4]$ with Solvent Water in Water + Co-Solvent Mixtures (한개의 산소다리를 가진 몰리브덴(V) 착물의 산소고리화 반응 (II). 2성분 혼합용매에서 용매물과 $[Mo_2O_3(Phen)_2(NCS)_4]$의 반응)

  • Sang-Oh Oh;Huee-Young Seok
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.203-210
    • /
    • 1988
  • Mono-oxo-bridged binuclear molybdenum(V) complex, $[Mo_2O_3(Phen)_2(NCS)_4]$ produces di-oxo-bridged binuclear molybdenum(V) complex, $[Mo_2O_4(Phen)_2(NCS)_2]$ in water + co-solvent, where the co-solvent are acetone, acetonitrile and N,N-dimethylformamide. The rate of conversion of $[Mo_2O_3(Phen)_2(NCS)_4]\;into\;[Mo_2O_4(Phen)_2(NCS)_2]$ has been measured by spectrophotometric method. Temperature was $10^{\circ}C$ to $40^{\circ}C$ and pressure was varied up to 1500 bar. The rate constants are increased with increasing water mole fraction and decreased with increasing concentration of hydrogen ion. The order of oxygen ring formation reaction rate in various cosolvent is as follows, ACT > AN > DMF which is agreed with solvent dielectric constants. The observed negative activation entropy ($[\Delta}S^{\neq}$), activation volume($[\Delta}V^{\neq}$) and activation compressibility coefficient(${\Delta}{\beta}^{\neq}$) values show that the solvent water molecule is strongly attracted to the complex at transition state. From these results, the oxygen ring formation reaction of $[Mo_2O_3(Phen)_2(NCS)_4]$ is believed association mechanism.

  • PDF

Atmospheric chemical vapor deposition of graphene on molybdenum foil at different growth temperatures

  • Naghdi, Samira;Rhee, Kyong Yop;Kim, Man Tae;Jaleh, Babak;Park, Soo Jin
    • Carbon letters
    • /
    • v.18
    • /
    • pp.37-42
    • /
    • 2016
  • Graphene was grown on molybdenum (Mo) foil by a chemical vapor deposition method at different growth temperatures (1000℃, 1100℃, and 1200℃). The properties of graphene were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and Raman spectroscopy. The results showed that the quality of the deposited graphene layer was affected by the growth temperature. XRD results showed the presence of a carbide phase on the Mo surface; the presence of carbide was more intense at 1200℃. Additionally, a higher I2D/IG ratio (0.418) was observed at 1200℃, which implies that there are fewer graphene layers at this temperature. The lowest ID/IG ratio (0.908) for the graphene layers was obtained at 1200℃, suggesting that graphene had fewer defects at this temperature. The size of the graphene domains was also calculated. We found that by increasing the growth temperature, the graphene domain size also increased.

Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

  • Lee, Seung-Kon;Beyer, Gerd J.;Lee, Jun Sig
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.613-623
    • /
    • 2016
  • Molybdenum-99 ($^{99}Mo$) is the most important isotope because its daughter isotope, technetium-99m ($^{99m}Tc$), has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of $^{99}Mo$, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of $^{99}Mo$ technology developments. Most of the industrial-scale $^{99}Mo$ processes have been based on the fission of $^{235}U$. Recently, important issues have been raised for the conversion of fission $^{99}Mo$ targets from highly enriched uranium to low enriched uranium (LEU). The development of new LEU targets with higher density was requested to compensate for the loss of $^{99}Mo$ yield, caused by a significant reduction of $^{235}U$ enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission $^{99}Mo$ production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the $^{99}Mo$ production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

Molybdenum and Cobalt Silicide Field Emitter Arrays

  • Lee, Jong-Duk;Shim, Byung-Chang;Park, Byung-Gook;Kwon, Sang-Jik
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 2000
  • In order to improve both the level and the stability of electron emission, Mo and Co silicides were formed from Mo mono-layer and Ti/Co bi-layers on single crystal silicon field emitter arrays (FEAs), respectively. Using the slope of Fowler-Nordheim curve and tip radius measured from scanning electron microscopy (SEM), the effective work function of Mo and Co silicide FEAs were calculated to be 3.13 eV and 2.56 eV, respectively. Compared with silicon field emitters, Mo and Co silicide exhibited 10 and 34 times higher maximum emission current, 10 V and 46 V higher device failure voltage, and 6.1 and 4.8 times lower current fluctuation, respectively. Moreover, the emission currents of the silicide FEAs depending on vacuum level were almost the same in the range of $10^{-9}{\sim}10^{-6}$ torr. This result shows that silicide is robust in terms of anode current degradation due to the absorption of air molecules.

  • PDF

Behavior of Implanted Dopants and Formation of Molybdenum Siliclde by Composite Sputtering (Composite target으로 증착된 Mo-silicide의 형성 및 불순물의 거동)

  • Cho, Hyun-Choon;Paek, Su-Hyon;Choi, Jin-Seog;Hwang, Yu-Sang;Kim, Ho-Suk;Kim, Dong-Won;Shim, Tae-Earn;Jung, Jae-Kyoung;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.375-382
    • /
    • 1992
  • Molybdenum silicide films have been prepared by sputtering from a single composite MoS$i_2$ source on both P, B$F_2$respectively implanted (5${\times}10^{15}ions/cm^2$ single crystal and P implanted (5${\times}10^{15}ions/cm^2$) polycrystalline silicon substrates followed by rapid thermal annealing in the ambient of argon. The heat treatment temperatures have been varied in the range of 600-l20$0^{\circ}C$ for 20 seconds. The properties of Mo-silicide and the diffusion behaviors of dopant after the heat treatment are investigated using X-ray diffraction, scanning electron microscopy(SEM) , secondary ions mass spectrometry(SIMS), four-point probe and $\alpha-step.$ Annealing at 80$0^{\circ}C$ or higher resulted in conversion of the amorphous phase into predominantly MoS$i_2$and a lower sheet resistance. There was no significant out-diffusion of dopants from both single crystal and polycrystalline silicon substrate into molybdenum silicide layers during annealing.

  • PDF

Morphological Structural and Electrical Properties of DC Magnetron Sputtered Mo Thin Films for Solar Cell Application

  • Fan, Rong;Jung, Sung-Hee;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.389-389
    • /
    • 2012
  • Molybdenum is one of the most important materials used as a back ohmic contact for $Cu(In,Ga)(Se,S)_2$ (CIGS) solar cells because it has good electrical properties as an inert and mechanically durable substrate during the absorber film growth. Sputter deposition is the common deposition process for Mo thin films. Molybdenum thin films were deposited on soda lime glass (SLG) substrates using direct-current planar magnetron sputtering technique. The outdiffusion of Na from the SLG through the Mo film to the CIGS based solar cell, also plays an important role in enhancing the device electrical properties and its performance. The structure, surface morphology and electrical characteristics of Mo thin films are generally dependent on deposition parameters such as DC power, pressure, distance between target and substrate, and deposition temperature. The aim of the present study is to show the resistivity of Mo layers, their crystallinity and morphologies, which are influenced by the substrate temperature. The thickness of Mo films is measured by Tencor-P1 profiler. The crystal structures are analyzed using X-ray diffraction (XRD: X'Pert MPD PRO / Philips). The resistivity of Mo thin films was measured by Hall effect measurement system (HMS-3000/0.55T). The surface morphology and grain shape of the films were examined by field emission scanning electron microscopy (FESEM: Hitachi S-4300). The chemical composition of the films was obtained by the energy dispersive X-ray spectroscopy (EDX). Finally the optimum substrate temperature as well as deposition conditions for Mo thin films will be developed.

  • PDF