• Title/Summary/Keyword: molten salt corrosion

Search Result 66, Processing Time 0.033 seconds

Characterization of vanadium carbide coating deposited by borax salt bath process

  • Aghaie-Khafri, M.;Daemi, N.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.233-243
    • /
    • 2012
  • Thermal reactive diffusion coating of vanadium carbide on DIN 2714 steel substrate was performed in a molten borax bath at $950-1050^{\circ}C$. The coating formed on the surface of the substrate had uniform thickness ($1-12{\mu}m$) all over the surface and the coating layer was hard (2430-2700 HV), dense, smooth and compact. The influence of the kinetics parameters, temperature and time, has been investigated. Vanadium carbide coating was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and X-ray diffraction analysis (XRD). The corrosion resistance of the coating was evaluated by potentiodynamic polarization in 3.5% NaCl solution. The results obtained showed that decrease of coating microhardness following increasing time and temperature is owing to the coarsening of carbides and coating grain size.

Corrosion Behavior of $Y_2O_3$ Coating in an Electrolytic Reduction Process (전해환원공정에서 $Y_2O_2$ 코팅층의 부식거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seung;Jeong, Myeong-Soo;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The electrolytic reduction of a spent oxide fuel involves a liberation of the oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Accordingly, it is essential to choose the optimum material for the processing equipment that handles the high molten salt. In this study, hot corrosion studies were performed on bare as well as coated superalloy specimens after exposure to lithium molten salt at $675^{\circ}C$ for 216 h under an oxidizing atmosphere. The IN713LC superalloy specimens were sprayed with an aluminized NiCrAlY bond coat and then with an $Y_2O_3$ top coat. The bare superalloy reveals an obvious weight loss due to spalling of the scale by the rapid scale growth and thermal stress. The chemical and thermal stability of the top coat has been found to be beneficial for increasing to the corrosion resistance of the structural materials for handling high temperature lithium molten salts.

ELECTRICAL BREAKDOWN INITIATION OF ANODIC FILMS DURING ANODIZING IN MOLTEN BISULPHATE MELT

  • Han, S.H.;Thompson, G.E.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.341-343
    • /
    • 1999
  • The morphology and composition of anodic films, formed on aluminium at various current densities, in the range $1-100{\;}Am^{-2}$, in the molten bisulphate melt at different temperatures (418-498K), have been studied using transmission electron microscopy of ultramicrotomed film sections, and ion beam thinned films. The first sign of incipient breakdown revealed by transmission electron microscopy of stripped films, is always the appearance of dark regions about 1,000 nm in diameter, representing local overgrowth of the film. The breakdown mechanism is closely related to thermal effects, because temperature rises at regions representing local overgrowth in the stripped films were observed at voltages close to the breakdown voltage, likely arising through impact ionization.

  • PDF

Thermal stability of surface modified Ni-Cr-alloys in molten FLiNaK salt (표면처리된 Ni-Cr계 합금의 FLiNaK 용융염 하에서의 고온 안정성)

  • Kwang, Hyun Cho;Bang, Hyun;Lee, Tae Suk;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.227-232
    • /
    • 2012
  • Inconel 617 and Hastelloy X are the most promising candidate materials for the heat exchanger of next generation nuclear reactor. Surface coating and its effects on high temperature properties for the Inconel 617 and Hastelloy X under molten FLiNaK (LiF-NaF-KF) salt environment have been investigated. For TiAlN and $Al_2O_3$ overlay coatings, the two different PVD (physical vapor deposition) methods of an arc discharge and a sputtering were applied, respectively. A study for the thermal stability of the surface modified Ni-Cr alloy substrates has been conducted. To evaluate the corrosion mechanism of Ni-Cr alloys in the molten salt, a ruptured Inconel pipe used for the molten salt transportation has been analyzed. The thermal properties of morphological and structural properties each sample were characterized before and after heat-treatment at $600^{\circ}C$ in molten FLiNaK salt. The results showed that the TiAlN and $Al_2O_3$ overlay coated specimens had the enhanced high temperature stability.

Water Sorption/Desorption Characteristics of Eutectic LiCl-KCl Salt-Occluded Zeolites

  • Harward, Allison;Gardner, Levi;Oldham, Claire M. Decker;Carlson, Krista;Yoo, Tae-Sic;Fredrickson, Guy;Patterson, Michael;Simpson, Michael F.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.259-268
    • /
    • 2022
  • Molten salt consisting primarily of eutectic LiCl-KCl is currently being used in electrorefiners in the Fuel Conditioning Facility at Idaho National Laboratory. Options are currently being evaluated for storing this salt outside of the argon atmosphere hot cell. The hygroscopic nature of eutectic LiCl-KCl makes is susceptible to deliquescence in air followed by extreme corrosion of metallic cannisters. In this study, the effect of occluding the salt into a zeolite on water sorption/desorption was tested. Two zeolites were investigated: Na-Y and zeolite 4A. Na-Y was ineffective at occluding a high percentage of the salt at either 10 or 20wt% loading. Zeolite-4A was effective at occluding the salt with high efficiency at both loading levels. Weight gain in salt occluded zeolite-4A (SOZ) from water sorption at 20% relative humidity and 40℃ was 17wt% for 10% SOZ and 10wt% for 20% SOZ. In both cases, neither deliquescence nor corrosion occurred over a period of 31 days. After hydration, most of the water could be driven off by heating the hydrated salt occluded zeolite to 530℃. However, some HCl forms during dehydration due to salt hydrolysis. Over a wide range of temperatures (320-700℃) and ramp rates (5, 10, and 20℃ min-1), HCl formation was no more than 0.6% of the Cl- in the original salt.

Effect of the Heat treatment and Boron on the Hot Corrosion Resistance of the Al Diffusion Coating (Al 확산피복층의 고온 내식성에 미치는 후열처리와 B첨가의 영향)

  • 김태원;윤재홍;이재현;김현수;변응선
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.67-77
    • /
    • 1999
  • The Ni base superalloy Mar-M247 substrate was aluminized or aluminized after boronizing by the pack cementation under Ar atmosphere. The hot corrosion resistance and after-heat-treatment effect of aluminized specimens were studied by the cyclic hot corrosion test in $Na_2SO_4$-NaCl molten salt. XRD analysis showed that the $Ni_2Al_3$ phase was formed between the coated layer and substrate below 1273K but the NiAl phase above 1273K. The peak of the NiAl phase was developed after heat treatment. Corrosion test showed that corrosion resistance of the specimen with the NiAl phase was better than that with the $Ni_2Al_3$ phase. Corrosion resistance could be improved by heat treatment to form ductile NiAl phase, where cracks were not formed by thermal shock on coating layer. Moreover, it appeared that heat treatment played a role to improve corrosion resistance of Al diffusion coating above 1273K. The existence of boron in the Al diffusion coating layer obstructed outwared diffusion of Cr from the substrate, and it influenced on corrosion resistance of the coating layer by weakening adherence of the oxide scale.

  • PDF

Fabrication and (Photo)Electrochemical Properties of Fe2O3/Na2Ti6O13/FTO Films for Water Splitting Process (물분해용 Fe2O3/Na2Ti6O13/FTO 박막 제조 및 특성평가)

  • Yun, Kang-Seop;Ku, Hye-Kyung;Kang, Woo-Seung;Kim, Sun-Jae
    • Corrosion Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.65-69
    • /
    • 2012
  • One dimensional(1D) $Na_2Ti_6O_{13}$ nanorods with 70 nm in diameter was synthesized by a molten salt method. Using the synthesized nanorods, about 750 nm thick $Na_2Ti_6O_{13}$ film was coated on Fluorine-doped tin oxide(FTO) glasss substrate by the Layer-by-layer self-assembly(LBL-SA) method in which a repetitive self-assembling of ions containing an opposite electric charge in an aqueous solution was utilized. Using the Kubelka-Munk function, the band gap energy of the 1D-$Na_2Ti_6O_{13}$ nanorods was nalyzed to be 3.5 eV. On the other hand, the band gap energy of the $Na_2Ti_6O_{13}$ film coated on FTO was found to be a reduced value of 2.9 eV, resulting from the nano-scale and high porosity of the film processed by LBL-SA method, which was favorable for the photo absorption capability. A significant improvement of photocurrent and onset voltage was observed with the $Na_2Ti_6O_{13}$ film incorporated into the conventional $Fe_2O_3$ photoelectrode: the photocurrent increased from 0.25 to 0.82 mA/$cm^2$, the onset voltage decreased from 0.95 to 0.78 V.

Study on the Elemental Diffusion Distance of a Pure Nickel Layer Additively Manufactured on 316H Stainless Steel (316H 스테인리스 강 위에 적층 제조된 순수 니켈층의 원소 확산거리 연구)

  • UiJun Ko;Won Chan Lee;Gi Seung Shin;Ji-Hyun Yoon;Jeoung Han Kim
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.220-225
    • /
    • 2024
  • Molten salt reactors represent a promising advancement in nuclear technology due to their potential for enhanced safety, higher efficiency, and reduced nuclear waste. However, the development of structural materials that can survive under severe corrosion environments is crucial. In the present work, pure Ni was deposited on the surface of 316H stainless steel using a directed energy deposition (DED) process. This study aimed to fabricate pure Ni alloy layers on an STS316H alloy substrate. It was observed that low laser power during the deposition of pure Ni on the STS316H substrate could induce stacking defects such as surface irregularities and internal voids, which were confirmed through photographic and SEM analyses. Additionally, the diffusion of Fe and Cr elements from the STS316H substrate into the Ni layers was observed to decrease with increasing Ni deposition height. Analysis of the composition of Cr and Fe components within the Ni deposition structures allows for the prediction of properties such as the corrosion resistance of Ni.

NiAl/Y Coating Process for Corrosion Resistance of Wet-seal area in MCFC (MCFC용 wet-seal부의 내식성 향상을 위한 NiAl/Y 피복 공정에 관한 연구)

  • Choe, Jae-Ung;Gang, Seong-Gun;Song, Sang-Bin;Hwang, Eung-Rim
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.666-670
    • /
    • 2001
  • To improve the corrosion resistance of separator wet-seal area which is the barrier of commercialization of molten carbonate fuel cell(MCFC), Ni/Y/Al coating layer was fabricated by Ni electroplating and Y, Al e-beam PVD on AISI 316L stainless steel. NiAlY alloy coating layer was formed by heat treatment in reduction atmosphere at $800^{\circ}C$ for 5hr. Immersion test in molten carbonate salt at $650^{\circ}C$ was performed on as- received AISI 316L stainless steel and NiAlY coated specimen. According to cross sectional SEM/EDS observations, corrosion resistance of separator wet-seal area was improved by formation of dense oxide layers of Al and Y.

  • PDF