• Title/Summary/Keyword: molten metal height

Search Result 14, Processing Time 0.027 seconds

Collision Behavior of Molten Metal Droplet by Laser Beam (레이저 빔에 의해 생성된 금속액적의 충돌거동)

  • 김용욱;양영수
    • Laser Solutions
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • A molten metal droplets are deposited onto solid substrate for solid freeform fabrication, Collision dynamic and substrate heat transfer associated with solidification determine the final shape of molten metal droplets. In this study, the experimental model, based on the variational condition with substrate temperature and falling height, was produced reliable optimal data of droplet pattern.

  • PDF

Establishment of Fundamental Process Conditions on Properties of Magnesium Alloy Thin Plates Fabricated by the Melt Drag Method (용융드래그방법으로 제작한 마그네슘합금 박판의 특성에 미치는 기본적인 공정조건 확립)

  • Han, Chang-Suk;Lee, Chan-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.7
    • /
    • pp.326-331
    • /
    • 2022
  • AZ31 magnesium alloy was used to manufacture a thin plate using a melt drag method. The effects of roll speed, molten metal temperature, and molten metal height, which are the basic factors of the melt drag method, on the surface shape, the thickness of the thin plate, Vickers hardness, and microstructure of the thin plate were investigated. It was possible to manufacture AZ31 magnesium alloy thin plate at the roll speed range of 1 to 90 m/min. The thickness of the thin plate, manufactured while changing only the roll speed, was about 1.8 to 8.8 mm. The shape of the solidified roll surface was affected by two conditions, the roll speed and the molten metal height, and the Vickers hardness of the manufactured magnesium alloy thin plate value ranged from Hv38~Hv60. The microstructure of the thin plate produced by this process was an equiaxed crystal and showed a uniform grain size distribution. The grain size was greatly affected by the contact state between the molten metal and the solidification roll, and the amount of reactive solids and liquids scraped at the same time as the thin plate. The average grain size of the thin plate fabricated in the range of these experimental conditions changed to about 50-300 ㎛.

Molten Metal Inkjet System (용융 메탈 잉크젯 시스템)

  • Lee Taik-Min;Kang Tae-Goo;Yang Jeong-Soon;Jo Jeong-Dai;Kim Kwang-Young;Kim Dong-Soo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.585-586
    • /
    • 2006
  • In this paper, we present a design, analysis, fabrication and performance test of the novel DoD metal-jet system for application to the high-density and high-temperature-melting materials. Based on the theoretical analysis, we design the metal-jet print head system and fabricate the metal-jet system, which can eject the droplet of lead-free metal solder in the high-temperature. In the experimental test, we set up the test apparatus for visualization of the droplet ejection and measure the Ejected droplet volume and velocity. As a result, the diameter, volume and the velocity of the ejected droplet are about $65-70{\mu}m$, 145-180 pl and 4m/sec. We also fabricate vertical and inclined 3D micro column structures using the present molten metal inkjet system. The measured geometries of the micro column structures are about height of $2,100{\mu}m$, diameter of $200{\mu}m$ and aspect ratio of 10.5 for vertical micro column and $1,400{\mu}m$ of height and $150{\mu}m$ of diameter for $65^{\circ}$-inclined micro column, respectively.

  • PDF

Effect of Powder Size on Infiltration Height in Producing MgO Reinforced Al Matrix Composite by Vacuum Infiltration Method

  • Calin, Recep;Citak, Ramazan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1271-1272
    • /
    • 2006
  • The vacuum infiltration method is one of the composite producing methods. There are several parameters in composite production by vacuum infiltration. One of them is particle size of reinforcement in particulate reinforced composites. In this study, MgO powder and Al were used as reinforcement and matrix respectively. MgO powders with different size and amount to give same height were filled in quartz tubes and liquid metal was vacuum infiltrated into the MgO powder under same vacuum condition and for same time. Infiltration height was measured and microstructure and fracture behavior of composite were investigated. It has been found that infiltration height and fracture strength were increased with particulate reinforcement sizes. It has also been determined that molten metal temperature facilitates infiltration.

  • PDF

Determination of the process variables for quality monitoring in direct rolling processes (직접압연 공정에서 품질계측을 위한 공정변수의 선정)

  • 배세철;박영준;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1364-1367
    • /
    • 1996
  • Recently, direct rolling process, called as strip casting process, has been interested in to save production cost by reducing forming processes. In direct rolling process, since a steel strip of thickness 1-5(mm) can be produced directly from molten metal, it can eliminate secondary hot rolling process. On the other hand, since many process variables are existed in this process and relation of these variables is very complex, it is difficult to realize the process design and the quality control. In this paper, as first step to overcome above difficulties, the quantitative relationship of the process variables affected to quality of the strip has been carried out through the numerical analysis. Also, we determined the process variable to monitor the quality in the direct rolling process. As a result, we show that the solidification final point, called as Nip point, was related directly to quality of the strip.

  • PDF

Characteristic Analysis and Selection of Process Parameters in Direct Rolling Processes (직접압연공정의 특성해석 및 공정변수 선정)

  • 박영준;조형석;이원호;강태욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.384-388
    • /
    • 1997
  • Recently,direct rolling process has been drawing increasing interests because production cost be greatly reduced by eliminating subsequent hot rolling processes. Such a process has been characterized to prosuce thin steel strip (thickness 1~5mm) directly from molten metal and to skip over the conventional hot rolling processes. However, since there are several process parameters, which affect the quality of product,and their relationship between the parametersare very complex,it is therefore very difficult to realize the process design and the quality control. To overcome these difficulties quantitative relationship between the parameters are investigated through a numerical analysis. Form these results, it is found that solidification final point is the most important paramter which is critical to quality of the strip. Also,the multiple regression model is obtianed to determine their relationship from the solidification final point and roll separating force which can be easily estimated

  • PDF

Analysis of the Molten Metal Direct Rolling for Magnesium Considering Thermal Flow Phenomena (열 유동 현상을 고려한 마그네슘 용탕 직접 압연공정 해석)

  • Bae J.W.;Kang C.G.;Kang S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.786-789
    • /
    • 2005
  • The proper parameters in a twin roll strip casting are important to obtain the stabilization of the Mg sheet. What is examined in this paper is the quantitative relationships of the important control parameters such as the roll speed, height of pool region, outlet size of nozzle, solidification profile and the final point of solidification in a twin roll strip casting Unsteady conservation equations were used for transport phenomena in the pool region of a twin roll strip casting in order to predict a velocity, temperature distributions of fields and a solidification process of molten magnesium. The energy equation of cooling roll Is solved simultaneously with the conservation equations of molten magnesium In order to consider the heat transfer through the cooling roil. The finite difference method (2-D) and the finite element method (2-D) are used in the analysis of pool region and cooling roil to reduce computing time and to improve the accuracy of calculation respectively.

  • PDF

Effects of Viscosity Control by Induction Heating on Micro Cell in Forming Process of Foamed Aluminum (알루미늄 발포재의 성형공정에서 유도가열 법에 의한 점도 제어가 미세 기공에 미치는 영향)

  • Jeon, Yong-Pil;Kang, Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.136-144
    • /
    • 2002
  • Melting method has long been considered difficult to realize because of problems such as the low foamability of molten metal, the varying size of cellular structures and solidification shrinkage. The parameters to solve the problem in electric furnace were stirring temperature, stirring velocity, heating velocity and foaming temperature It is important to consider the effects of induction heating, because it brings about the inner flow by the temperature gradient. Aspect ratio also depends on the induction heating. Mechanical properties are dependent on cell sizes and aspect rations. Therefore, this paper presents the effects of these parameters on the cell sizes. For the sake of this, combined stirring process was used to fabricate aluminum foam materials by the above mentioned parameters. Image analysis was performed to calculate the cell sizes, distributions, and aspect ratioes at the cross section of feared aluminum in the direction of height.

Production of Ultra-fine Metal Powder with Gas Atomization Processes

  • Wang, M. R.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.59-68
    • /
    • 2006
  • Experimental results of the metal powder production with internal mixing, internal impinging and the atomizer coupled with substrate design are presented in this paper. In a test with internal mixing atomizer, mean powder size was decreased from $37{\mu}m\;to\;23{\mu}m$ for Pb65Sn35 alloy as the gas-to-melt mass ratio was increased from 0.04 to 0.17. The particle size further reduces to $16.01{\mu}m$ as the orifice area is increased to $24mm^2$. The micrograph of the metal powder indicates that very fine and spherical metal powder has been produced by this process. In a test program using the internal impinging atomizers, the mean particle size of the metal powder was decreased from $22{\mu}m\;to\;12{\mu}m$ as the gas-to-melt-mass ratio increased from 0.05 to 0.22. The test results of an atomizer coupled with a substrate indicates that the deposition rate of the molten spray on the substrate is controlled by the diameter of the substrate, the height of the substrate ring and the distance of the substrate from the outlet of the atomizer. This in rum determines the powder production rate of the spraying processes. Experimental results indicate that the deposition rate of the spray forming material decreases as the distance between the substrate and the atomizer increases. For example, the deposition rate decreases from 48% to 19% as the substrate is placed at a distance from 20cm to 40cm. On the other hand, the metal powder production rate and its particle size increases as the subsrate is placed far away from the atomizer. The production of metal powder with mean particle size as low as $3.13{\mu}m$ has been achieved, a level which is not achievable by the conventional gas atomization processes.

  • PDF

A study on the performance improvement of the quality prediction neural network of injection molded products reflecting the process conditions and quality characteristics of molded products by process step based on multi-tasking learning structure (다중 작업 학습 구조 기반 공정단계별 공정조건 및 성형품의 품질 특성을 반영한 사출성형품 품질 예측 신경망의 성능 개선에 대한 연구)

  • Hyo-Eun Lee;Jun-Han Lee;Jong-Sun Kim;Gu-Young Cho
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.72-78
    • /
    • 2023
  • Injection molding is a process widely used in various industries because of its high production speed and ease of mass production during the plastic manufacturing process, and the product is molded by injecting molten plastic into the mold at high speed and pressure. Since process conditions such as resin and mold temperature mutually affect the process and the quality of the molded product, it is difficult to accurately predict quality through mathematical or statistical methods. Recently, studies to predict the quality of injection molded products by applying artificial neural networks, which are known to be very useful for analyzing nonlinear types of problems, are actively underway. In this study, structural optimization of neural networks was conducted by applying multi-task learning techniques according to the characteristics of the input and output parameters of the artificial neural network. A structure reflecting the characteristics of each process step was applied to the input parameters, and a structure reflecting the quality characteristics of the injection molded part was applied to the output parameters using multi-tasking learning. Building an artificial neural network to predict the three qualities (mass, diameter, height) of injection-molded product under six process conditions (melt temperature, mold temperature, injection speed, packing pressure, pacing time, cooling time) and comparing its performance with the existing neural network, we observed enhancements in prediction accuracy for mass, diameter, and height by approximately 69.38%, 24.87%, and 39.87%, respectively.