• Title/Summary/Keyword: molecular profile

Search Result 533, Processing Time 0.035 seconds

Microarray Analysis of Alteration in Gene Expression by Acori graminei rhizoma (AGR) Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells (흰쥐 대뇌세포의 저산소증 모델에서 석창포(石菖浦 Acori graminei rhizoma. AGR)에 의한 유전자 표현 변화의 microarray 분석)

  • Park, Dong-Jun;Jung, Seung-Hyun;Moon, Il-Soo;Lee, Won-Chol;Shin, Gil-Jo
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.150-161
    • /
    • 2007
  • Acori graminei Rhizomn (AGR) is a perennial herb which has been used clinically as a traditional oriental medicine against stroke, Alzheimer's disease, and vascular dementia. We investigated the effect of AGR on the modulation of gene expression profile in a hypoxic model of cultured rat cortical cells. Rat cerebrocortical cells were grown in Neurobasal medium. On DIV12, cells were treated with AGR $(10ug/m\ell)$, given a hypoxic shock (2% $O_2$, 3 hr) on DIV14, and total RNAs were prepared one day after shock. Microarray analyses indicated that the expression levels of most genes were altered within the global M values +0.5 and -0.5, i.e., 40% increase or decrease. There were 750 genes which were upregulated by < global M +0,2, while 700 genes were downregulated by > global M -0.2. The overall profile of gene expression suggests that AGR suppresses apoptosis (upregulation of anti-apopotic genes such as TEGT, TIEG, Dad, p53, and downregulation of pro-apopotic genes such as DAPK, caspase 2, pdcd8), ROS (upregulation of RARa, AhR), and that AGR has neurotrophic effects (upregulation of Aktl, Akt2). These results provide a platform for investigation of the molecular mechanism of the effect of AGR in neuroprotection.

Expression Profiling of Lipopolysaccharide Target Genes in RAW264.7 Cells by Oligonucleotide Microarray Analyses

  • Huang, Hao;Park, Cheol-Kyu;Ryu, Ji-Yoon;Chang, Eun-Ju;Lee, Young-Kyun;Kang, Sam-Sik;Kim, Hong-Hee
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.890-897
    • /
    • 2006
  • In inflammatory responses, induction of cytokines and other immune regulator genes in macrophages by pathogen-associated signal such as lipopolysaccharide (LPS) plays a crucial role. In this study, the gene expression profile changes by LPS treatment in the macrophage/monocyte lineage cell line RAW264.7 was investigated. A 60-mer oligonucleotide microarray of which probes target 32381 mouse genes was used. A reverse transcription-in vitro translation labeling protocol and a chemileuminescence detection system were employed. The mRNA expression levels in RAW264.7 cells treated for 6 h with LPS and the control vehicle were compared. 747 genes were up-regulated and 523 genes were down-regulated by more than 2 folds. 320 genes showing more than 4-fold change by LPS treatment were further classified for the biological process, molecular function, and signaling pathway. The biological process categories that showed high number of increased genes include the immunity and defense, the nucleic acid metabolism, the protein metabolism and modification, and the signal transduction process. The chemokine-cytokine signaling, interleukin signaling, Toll receptor signaling, and apoptosis signaling pathways involved high number of genes differentially expressed in response to LPS. These expression profile data provide more comprehensive information on LPS-target genes in RAW264.7 cells, which will be useful in comparing gene expression changes induced by extracts and compounds from anti-inflammatory medicinal herbs.

Purification and biological activity of recombinant human bone morphogenetic protein-2 produced by E. coli expression system (E. coli 발현 시스템에 의해 생산된 recombinant human bone morphogenetic protein-2의 정제와 생물학적 활성)

  • Choi, Kyung-Hee;Moon, Keumok;Kim, Soo-Hong;Yun, Jeong-Ho;Jang, Kyung-Lib;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.41-50
    • /
    • 2008
  • Purpose: Bone morphogenetic protein-2(BMP-2) has been shown to possess significant osteoinducitve potential. There have been attempts to overcome a limitation of mass production, and economical efficiency of BMP. The aim of this study was to produce recombinant human BMP-2(rhBMP-2) from E. coli in a large scale and evaluate its biological activity. Materials and Methods: The E.coli strain BL21(DE3) was used as a host for rhBMP-2 production. Dimerized rhBMP-2 was purified by affinity chromatography using Heparin column. To determine the physicochemical properties of the rhBMP-2 expressed in E. coli, we examined the HPLC profile and performed Western blot analysis. The effect of the purified rhBMP-2 dimer on osteoblast differentiation was examined by alkaline phosphatase (ALP) activity and representing morphological change using C2C12 cell. Results: E. coli was genetically engineered to produce rhBMP-2 in a non-active aggregated form. We have established a method which involves refolding and purifying a folded rhBMP-2 dimer from non-active aggregates. The purified rhBMP-2 homodimer was characterized by SDS-PAGE as molecular weight of about 28kDa and eluted at 34% acetonitrile, 13.27 min(retention time) in the HPLC profile and detected at Western blot. The purified rhBMP-2 dimer stimulated ALP activity and induced the transformation from myogenic differentiation to osteogenic differentiation. Conclusion: rhBMP-2 was produced in E. coli using genetic engineering. The purified rhBMP-2 dimer stimulated ALP activity and induced the osteogenic differentiation of C2C12 cells.

GaAs Epitaxial Layer Growth by Molecuar Beam Epitaxy (MBE에 이한 GaAs 에피택셜층 성장)

  • 정학기;이재진
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.6
    • /
    • pp.34-40
    • /
    • 1985
  • Characteristics of GaAE epilayers grown on (100) CaAs wa(tors by molecular beam epitaxy (MBE) under various single crystal growing conditions were investigated. In fabrica-ting GaAs, epilayer by MBE, the most important factors are a substrate temperature(ts) and a flux density ratio (As/Ga). In this experiment, the substrate temperature was varied in the range of 48$0^{\circ}C$ to $650^{\circ}C$ and As and Ga cell temperatures were varied in the range of 218$^{\circ}C$ to 256$^{\circ}C$ and 876$^{\circ}C$ to 98$0^{\circ}C$, respectively. At the substrate temperature of 54$0^{\circ}C$, As cell temperature of 23$0^{\circ}C$, and Ga cell temperature of 91$0^{\circ}C$, the As/Ga ratio was 5"10, the surface morphology was most smooth . Investigation of As-stabilized surface by RHEED and of depth profile by SIM5 showed that As is less stable than Ga. Also, X-ray diffraction measurement revealed that single crystals of (400) and (200) were formed at the both sub-strate temperatures of 52$0^{\circ}C$ and 54$0^{\circ}C$.TEX>.

  • PDF

Carthami Flos Extract Treatment Restored Changes of Gene Expression on ICH Model in Rats (홍화(紅花) 추출물 투여에 의한 뇌출혈 흰쥐 뇌조직의 유전자 발현 조절)

  • Lim, Se-Hyun;Son, Young-Soo;Back, Jin-Ung;Cho, Su-In;Kim, Young-Kyun
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.12 no.3
    • /
    • pp.81-90
    • /
    • 2008
  • Objectives : The pathophysiology of ICH is not fully understood, therefore, the fundamental therapeutic strategies for ICH also not well inspected either. The genetic profile for the effect of Carthami Flos extract on cerebral hemorrhage in rat brain tissue was measured using microarray technique. Genes displaying expressional change on brain damage were selected and the functional analysis on these genes was conducted. Methods : Rats were placed in a stereotaxic frame after intraperitoneal injection of chloralhydrate, and ICH was induced by injection of collagenase type IV and Carthami Flos extract was administered orally. The molecular profile of cerebral hemorrhage in rat brain tissue was measured using microarray technique to identify up- or down- regulated genes in brain tissue. Results : Upon treatment with Carthami Flos extract on the rat having brain damage, many genes show expressional change. The pattern of gene expressional change can be classified into 8 classes in which two types of classes were composed of recovered genes from up or down-regulation by brain damage, respectively. Conclusions : Further analysis using protein interaction database identified some key molecules that can be used for elucidation of therapeutical mechanism of Carthami Flos extract in future.

  • PDF

Phosphoserine Phosphatase Promotes Lung Cancer Progression through the Dephosphorylation of IRS-1 and a Noncanonical L-Serine-Independent Pathway

  • Park, Seong-Min;Seo, Eun-Hye;Bae, Dong-Hyuck;Kim, Sung Soo;Kim, Jina;Lin, Weiwei;Kim, Kyung-Hee;Park, Jong Bae;Kim, Yong Sung;Yin, Jinlong;Kim, Seon-Young
    • Molecules and Cells
    • /
    • v.42 no.8
    • /
    • pp.604-616
    • /
    • 2019
  • Phosphoserine phosphatase (PSPH) is one of the key enzymes of the L-serine synthesis pathway. PSPH is reported to affect the progression and survival of several cancers in an L-serine synthesis-independent manner, but the mechanism remains elusive. We demonstrate that PSPH promotes lung cancer progression through a noncanonical L-serine-independent pathway. PSPH was significantly associated with the prognosis of lung cancer patients and regulated the invasion and colony formation of lung cancer cells. Interestingly, L-serine had no effect on the altered invasion and colony formation by PSPH. Upon measuring the phosphatase activity of PSPH on a serine-phosphorylated peptide, we found that PSPH dephosphorylated phospho-serine in peptide sequences. To identify the target proteins of PSPH, we analyzed the protein phosphorylation profile and the PSPH-interacting protein profile using proteomic analyses and found one putative target protein, IRS-1. Immunoprecipitation and immunoblot assays validated a specific interaction between PSPH and IRS-1 and the dephosphorylation of phospho-IRS-1 by PSPH in lung cancer cells. We suggest that the specific interaction and dephosphorylation activity of PSPH have novel therapeutic potential for lung cancer treatment, while the metabolic activity of PSPH, as a therapeutic target, is controversial.

Gas dynamics and star formation in NGC 6822

  • Park, Hye-Jin;Oh, Se-Heon;Wang, Jing;Zheng, Yun;Zhang, Hong-Xin;de Blok, W.J.G.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.70.2-71
    • /
    • 2021
  • We examine gas kinematics and star formation activities of NGC 6822, a gas-rich dwarf irregular galaxy in the Local Group at a distance of ~490 kpc. We perform profile decomposition of all the line-of-sight (LOS) HI velocity profiles of the high-resolution (42.4" × 12" spatial; 1.6 km/s spectral) HI data cube of the galaxy, taken with the Australian Telescope Compact Array (ATCA). To this end, we use a novel tool based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, the so-called BAYGAUD, which allows us to decompose a velocity profile into an optimal number of Gaussian components in a quantitative manner. We group all the decomposed components into bulk-narrow, bulk-broad, and non-bulk gas components classified with respect to their velocity dispersions and the amounts of velocity offset from the global kinematics, respectively. Using the surface densities and velocity dispersions of the kinematically decomposed HI gas maps together with the rotation curve of NGC 6822, we derive Toomre-Q parameters for individual regions of the galaxy which quantify the level of local gravitational instability of the gaseous disk. We also measure the local star formation rate (SFR) of the corresponding regions in the galaxy by combining GALEX Far-ultraviolet (FUV) and WISE 22㎛ images. We then relate the gas and SFR surface densities in order to investigate the local Kennicutt-Schmidt (K-S) law of gravitationally unstable regions which are selected from the Toomre Q analysis. Of the three groups, the bulk-narrow, bulk-broad and non-bulk gas components, we find that the lower Toomre-Q values the bulk-narrow gas components have, the more consistent with the linear extension of the K-S law derived from molecular hydrogen (H2) observations.

  • PDF

Gas kinematics and star formation in NGC 6822

  • Park, Hye-Jin;Oh, Se-Heon;Wang, Jing;Zheng, Yun;Zhang, Hong-Xin;de Blok, W.J.G.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.61.4-62
    • /
    • 2020
  • We present H I gas kinematics and star formation activities of NGC 6822, a dwarf galaxy located in the Local Volume at a distance of ~490 kpc. We perform profile decomposition of the line-of-sight velocity profiles of the high-resolution (~42.4" × 12") spatial; ~1.6 km/s spectral) H I data cube taken with the Australia Telescope Compact Array (ATCA). For this, we use a new tool, the so-called BAYGAUD (BAYesian GAUssian Decompositor) which is based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, allowing us to decompose a line-of-sight velocity profile into an optimal number of Gaussian components in a quantitative manner. We classify the decomposed H I gas components of NGC 6822 into kinematically cold, warm or hot ones with respect to their velocity dispersion: 1) cold: < 4 km/s, 2) warm: 4 ~ 8 km/s, 3) hot: > 8 km/s. We then derive the Toomre-Q parameters of NGC 6822 using the kinematically decomposed H I gas maps. We also correlate their gas surface densities with the surface star formation rates derived using both GALEX far-ultraviolet and WISE 22 micron data to examine the impact of gas turbulence caused by stellar feedback on the Kennicutt-Schmidt (K-S) law. The kinematically cold component is likely to better follow the linear extension of the Kennicutt-Schmidt (K-S) law for molecular hydrogen (H2) at the low gas surface density regime where H I is not saturated.

  • PDF

Characterization of Cholesterol Lowering Lactic Acid Bacteria Isolated from Palm Wine and Maize Beer and Assessment of Their Use in the Production of Probiotic Papaya Juice

  • Bertrand Tatsinkou Fossi;Dickson Ebwelle Ekabe;Liliane Laure Toukam Tatsinkou;Rene Bilingwe Ayiseh;Frederic Tavea;Pierre Michel Jazet
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.191-202
    • /
    • 2023
  • Elevated serum cholesterol is a main risk factor for heart disorders. Most probiotic products administered to lower cholesterol are dairy products which are not suitable for lactose-intolerant individuals. In this study, we assessed the cholesterol-lowering efficacy of LAB isolated from traditionally fermented drinks in diet-induced rats and determine their efficacy in the production of non-dairy, probiotic formulations using papaya juice. LAB were isolated from palm wine and corn beer on MRS agar using a pour-plate technique. Identification was carried out using 16S rRNA gene sequencing. A hypercholesterolemia model in which diet-induced Wistar albino rats were assigned into four groups was established. Oral gavage was carried out for 30 days. On the 31st day, the rats were dissected and the serum lipid profile was analyzed using biochemical kits. A 106 cfu/ml of a 24-h-old culture of selected lactobacilli was used to inoculate papaya juice and incubated at 37℃. Microbial and chemical changes were assessed during papaya fermentation and after four weeks of cold storage. Two selected isolates (Pw1 and Cb4) had in vitro cholesterol reduction of > 80%. These two isolates lowered lipid profile (triglyceride, total cholesterol, LDL-c) significantly, and increased HDL-c levels (p < 0.5) in the rat sera. Phylogenetic analysis showed that Pw1 was 98.86% similar to Limosilactobacillus fermentum, while Cb4 was 99.54% similar to Enteroccocus faecium. Both strains fermented papaya juice with cell viability reaching 8.92 × 108 cfu/ml and 25.3 × 108 cfu/ml respectively, and were still viable after 4 weeks of cold storage.

Effect of Prunetin on Streptozotocin-Induced Diabetic Nephropathy in Rats - a Biochemical and Molecular Approach

  • Jose Vinoth Raja Antony Samy;Nirubama Kumar;Sengottuvelu Singaravel;Rajapandiyan Krishnamoorthy;Mohammad A Alshuniaber;Mansour K. Gatasheh;Amalan Venkatesan;Vijayakumar Natesan;Sung-Jin Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.619-628
    • /
    • 2023
  • In the modern era, chronic kidney failure due to diabetes has spread across the globe. Prunetin (PRU), a component of herbal medicines, has a broad variety of pharmacological activities; these may help to slow the onset of diabetic kidney disease. The anti-nephropathic effects of PRU have not yet been reported. The present study explored the potential nephroprotective actions of PRU in diabetic rats. For 28 days, nephropathic rats were given oral doses of PRU (20, 40, and 80 mg/kg). Body weight, blood urea, creatinine, total protein, lipid profile, liver marker enzymes, carbohydrate metabolic enzymes, C-reactive protein, antioxidants, lipid peroxidative indicators, and the expression of insulin receptor substrate 1 (IRS-1) and glucose transporter 2 (GLUT-2) mRNA genes were all examined. Histological examinations of the kidneys, liver, and pancreas were also performed. The oral treatment of PRU drastically lowered the blood glucose, HbA1c, blood urea, creatinine, serum glutamic-oxaloacetic transaminase, serum glutamic pyruvic transaminase, alkaline phosphatase, lipid profile, and hexokinase. Meanwhile, the levels of fructose 1,6-bisphosphatase, glucose-6-phosphatase, and phosphoenol pyruvate carboxykinase were all elevated, but glucose-6-phosphate dehydrogenase dropped significantly. Inflammatory marker antioxidants and lipid peroxidative markers were also less persistent due to this administration. PRU upregulated the IRS-1 and GLUT-2 gene expression in the nephropathic group. The possible renoprotective properties of PRU were validated by histopathology of the liver, kidney, and pancreatic tissues. It is therefore proposed that PRU (80 mg/kg) has considerable renoprotective benefits in diabetic nephropathy in rats.