• Title/Summary/Keyword: molecular profile

Search Result 533, Processing Time 0.029 seconds

Characterization of Bacteriocin Production by Lactococcus lactis LAB3113 Isolated from Kimchi

  • Shin, Jong-Yeun;Cheol Ahn
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.2
    • /
    • pp.101-108
    • /
    • 1997
  • A lactic acid bacterium LAB3113, isolated from traditionally fermented Kimchi was found to produce bacteriocin whose activity was very specific toward lactobacilli and not effective against any other bacteria. Lactobacilli affected by the inhibitory substance included Lactobacillus delbrueckii-lactis, L. johnsonii, L. gsseri, and L. curvatus. Based upon biochemical and physiological characteristics, LAB3113 was classified as Lactococcus lactis, and its bacteriocin was named as lactococcin K3113. Lactococcus lactis. LAB3113 produced bacteriocin at th early stage of growth and the concentration of the bacteriocin did not decrease even after alt stationalry phase. Optimal temperature of bacteriocin production was $25^{\circ}C$ at the initial pH 7.0. Partially purified lactococcin K3113 was completely inactivated by protease, but not affected by lipase, lysozyme and RNase. The bacteriocin was very heat-stable even after autoclaving for 20 min. It was also stable in pH changes, an was not affected by th presence of solvents. lacotococcin K3113 appeared to act in bactericidal mode against L. delbrueckii-lactis ATCC4797. Molecular weight of lactococcin K3113 was calibrated as 10,500 dal by SDS-PAGE an activity staining. Lactococcus lactis LAB3113 had four residential plasmids of 3.7kb, 11.2kb, 15.5kb, and 48kh in molecular sizes. Plasmid profile analysis of mutant strain revealed that 15.5 kb plasmid was re-sponsible for the production of lactococcin K3113 and its immunity to the bacteriocin.

  • PDF

Utility and Clinical Value of Circulating Tumor Cells in Gastrointestinal Cancer (소화기계 암에서의 순환종양세포 분석과 임상적 가치)

  • Hyeongjung Woo;Hyun Young Shin;Minseok S. Kim
    • Journal of Digestive Cancer Research
    • /
    • v.12 no.2
    • /
    • pp.106-114
    • /
    • 2024
  • Circulating tumor cells (CTCs) are a valuable biomarker for the diagnosis, prognosis, and therapeutic management of gastrointestinal (GI) cancers. A major challenge in GI cancer treatment is the high rate of metastasis, which significantly contributes to cancer-related mortality. CTCs are crucial in the metastatic cascade, serving as indicators of tumor progression. Therefore, the detection and molecular characterization of CTCs have prognostic potential for identifying early-stage GI cancers and assessing metastatic probability, enabling timely treatment. Moreover, CTC analysis offers a minimally invasive method for real-time monitoring of tumors. Clinicians can adjust therapeutic strategies accordingly by tracking changes in CTC count and molecular profile. Despite this promising application, no standardized protocol for CTC isolation in GI tract cancers has been established, which poses a barrier to routine clinical use. This review explores the current CTC detection methodologies, their clinical relevance in GI cancer management, and the potential integration of CTC analysis into personalized medicine. We also discuss the challenges and future directions in CTC research, focusing on clinical validation and the development of standardized procedures to fully realize the utility of CTC count for improving patient care.

Effects of Dietary Lysine Levels on Apparent Nutrient Digestibility and Serum Amino Acid Absorption Mode in Growing Pigs

  • Zeng, P.L.;Yan, H.C.;Wang, X.Q.;Zhang, C.M.;Zhu, C.;Shu, G.;Jiang, Q.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.1003-1011
    • /
    • 2013
  • Two experiments were conducted to determine the effects of different dietary lysine levels on the apparent nutrient digestibility, the serum amino acid (AA) concentration, and the biochemical parameters of the precaval and portal vein blood in growing pigs. In Experiment 1, 15 noncannulated pigs received diets with different lysine densities (0.65%, 0.95%, and 1.25% lysine) for 13 d. A total collection digestion test was performed, and blood samples were collected from the precaval vein at the end of the experiment. In Experiment 2, four cannulated pigs were fed the same diets of Experiment 1. The experiment used a self-control experimental design and was divided into three periods. On d 5 of each period, at 0.5 h before feeding and hourly up to 8 h after feeding, single blood samples were collected from catheters placed in the portal vein. In Experiment 1, some serum AAs (including lysine), serum urinary nitrogen (SUN), and total protein (TP) concentrations were significantly affected by the dietary lysine levels (p<0.05). Moreover, the 0.65% lysine treatment showed a significant lower apparent digestibility of gross energy, dry matter, crude protein, and phosphorus than the other treatments (p<0.05). In Experiment 2, serum lysine, histidine, phenylalanine, threonine, valine, isoleucine (p = 0.0588), triglyceride, and SUN (p = 0.0572) concentrations were significantly affected by the dietary lysine levels (p<0.05). Additionally, almost all of the determined serum AA and total AA concentrations reached their lowest values at 0.5 h before feeding and their highest values at 2 h after feeding (p<0.05). These findings indicate that the greatest absorption of AA occurred at 2 h after feeding and that the dynamic profile of serum AA is affected by the dietary lysine levels. Moreover, when the dietary lysine content was 0.95%, the growing pigs achieved a better nutrient digestibility and serum metabolites levels.

MicroRNA analysis reveals the role of miR-214 in duck adipocyte differentiation

  • Wang, Laidi;Hu, Xiaodan;Wang, Shasha;Yuan, Chunyou;Wang, Zhixiu;Chang, Guobin;Chen, Guohong
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1327-1339
    • /
    • 2022
  • Objective: Fat deposition in poultry is an important factor in production performance and meat quality research. miRNAs also play important roles in regulating adipocyte differentiation process. This study was to investigate the expression patterns of miRNAs in duck adipocytes after differentiation and explore the role of miR-214 in regulating carnitine palmitoyltransferases 2 (CPT2) gene expression during duck adipocyte differentiation. Methods: Successful systems for the isolation, culture, and induction of duck primary fat cells was developed in the experiment. Using Illumina next-generation sequencing, the miRNAs libraries of duck adipocytes were established. miRanda was used to predict differentially expressed (DE) miRNAs and their target genes. The expression patterns of miR-214 and CPT2 during the differentiation were verified by quantitative real-time polymerase chain reaction and western blot. Luciferase reporter assays were used to explore the specific regions of CPT2 targeted by miR-214. We used a miR-214 over-expression strategy in vitro to further investigate its effect on differentiation process and CPT2 gene transcription. Results: There were 481 miRNAs identified in duck adipocytes, included 57 DE miRNA candidates. And the 1,046 targets genes of DE miRNAs were mainly involved in p53 signaling, FoxO signaling, and fatty acid metabolism pathways. miR-214 and CPT2 showed contrasting expression patterns before and after differentiation, and they were selected for further research. The expression of miR-214 was decreased during the first 3 days of duck adipocytes differentiation, and then increased, while the expression of CPT2 increased both in the transcriptional and protein level. The luciferase assay suggested that miR-214 targets the 3'untranslated region of CPT2. Overexpression of miR-214 not only promoted the formation of lipid droplets but also decreased the protein abundance of CPT2. Conclusion: Current study reports the expression profile of miRNAs in duck adipocytes differentiated for 4 days. And miR-214 has been proved to have the regulator potential for fat deposition in duck.

Current status of Atomic and Molecular Data for Low-Temperature Plasmas

  • Yoon, Jung-Sik;Song, Mi-Young;Kwon, Deuk-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.64-64
    • /
    • 2015
  • Control of plasma processing methodologies can only occur by obtaining a thorough understanding of the physical and chemical properties of plasmas. However, all plasma processes are currently used in the industry with an incomplete understanding of the coupled chemical and physical properties of the plasma involved. Thus, they are often 'non-predictive' and hence it is not possible to alter the manufacturing process without the risk of considerable product loss. Only a more comprehensive understanding of such processes will allow models of such plasmas to be constructed that in turn can be used to design the next generation of plasma reactors. Developing such models and gaining a detailed understanding of the physical and chemical mechanisms within plasma systems is intricately linked to our knowledge of the key interactions within the plasma and thus the status of the database for characterizing electron, ion and photon interactions with those atomic and molecular species within the plasma and knowledge of both the cross-sections and reaction rates for such collisions, both in the gaseous phase and on the surfaces of the plasma reactor. The compilation of databases required for understanding most plasmas remains inadequate. The spectroscopic database required for monitoring both technological and fusion plasmas and thence deriving fundamental quantities such as chemical composition, neutral, electron and ion temperatures is incomplete with several gaps in our knowledge of many molecular spectra, particularly for radicals and excited (vibrational and electronic) species. However, the compilation of fundamental atomic and molecular data required for such plasma databases is rarely a coherent, planned research program, instead it is a parasitic process. The plasma community is a rapacious user of atomic and molecular data but is increasingly faced with a deficit of data necessary to both interpret observations and build models that can be used to develop the next-generation plasma tools that will continue the scientific and technological progress of the late 20th and early 21st century. It is therefore necessary to both compile and curate the A&M data we do have and thence identify missing data needed by the plasma community (and other user communities). Such data may then be acquired using a mixture of benchmarking experiments and theoretical formalisms. However, equally important is the need for the scientific/technological community to recognize the need to support the value of such databases and the underlying fundamental A&M that populates them. This must be conveyed to funders who are currently attracted to more apparent high-profile projects.

  • PDF

Derivation of MSC Like-Cell Population from Feeder Free Cultured hESC and Their Proteomic Analysis for Comparison Study with BM-MSC (Feeder Free 상태에서 배양된 인간 배아 줄기세포를 이용한 중간엽 줄기세포 분화 및 단백체학을 이용한 골수 유래 중간엽 줄기세포와의 비교)

  • Park, Soon-Jung;Jeon, Young-Joo;Kim, Ju-Mi;Shin, Jeong-Min;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.143-151
    • /
    • 2010
  • Pluripotency of human embryonic stem cell (hESC) is one of the most valuable ability of hESCs for applying cell therapy field, but also showing side effect, for example teratoma formation. When transplant multipotent stem cell, such as mesnchymal stem cell (MSC) which retains similar differentiation ability, they do not form teratoma in vivo, but there exist limitation of cellular source supply. Accordingly, differentiation of hESC into MSC will be promising cellular source with strong points of both hESC and MSC line. In this study, we described the derivation of MSC like cell population from feeder free cultured hESC (hESC-MSC) using direct differentiation system. Cells population, hESC-MSC and bone marrow derived MSC (BM-MSC) retained similar characteristics in vitro, such as morphology, MSC specific marker expression and differentiation capacity. At the point of differentiation of both cell populations, differentiation rate was slower in hESC-MSC than BM-MSC. As these reason, to verify differentially expressed molecular condition of both cell population which bring out different differentiation rate, we compare the molecular condition of hESC-MSC and BM-MSC using 2-D proteomic analysis tool. In the proteomic analysis, we identified 49 differentially expressed proteins in hESC-MSC and BM-MSC, and they involved in different biological process such as positive regulation of molecular function, biological process, cellular metabolic process, nitrogen compound metabolic process, macromolecule metabolic process, metabolic process, molecular function, and positive regulation of molecular function and regulation of ubiquitin protein ligase activity during mitotic cell cycle, cellular response to stress, and RNA localization. As the related function of differentially expressed proteins, we sought to these proteins were key regulators which contribute to their differentiation rate, developmental process and cell proliferation. Our results suggest that the expressions of these proteins between the hESC-MSC and BM-MSC, could give to us further evidence for hESC differentiation into the mesenchymal stem cell is associated with a differentiation factor. As the initial step to understand fundamental difference of hESC-MSC and BM-MSC, we sought to investigate different protein expression profile. And the grafting of hESC differentiation into MSC and their comparative proteomic analysis will be positively contribute to cell therapy without cellular source limitation, also with exact background of their molecular condition.

Analysis of Molecular Species of Vegetable Oil Triglycerides by Capillary Column GC-MS (Capillary Column GC-MS에 의한 식물유 트리글리세리드 분자종의 분석)

  • Yoon, Hyeung-Sik;Kim, Seon-Bong;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.391-398
    • /
    • 1989
  • Triglyceride molecular species In some vegetable oils were analyzed by capillary column gas chromatography and electron impact ionization mass spectrometry utilizing selected ion monitoring. Triglycerides were separated according to their molecular weights and their degrees of unsaturation on $25m{\times}0.25mm$ fused silica open tubular capillary column coated with a phenylmethylsilicone gum stationary phase and in an analysis time less than 13 min. Triglyceride molecular species were identified by analyzing the fragment ions having the same time on the selected ion monitoring profile . The major triglyceride molecular species in each oils were $C_{18:1}.\;C_{18:2}.\;C_{18:2}(OLL:18.3%),\;C_{18:2}.\;C_{18:2}.\;C_{18:2}(LLL;\;14.3%),\;C_{18:0}.\;C_{18:2}.\;C_{18:2}(SLL;\;14.1%),\;C_{16:0}.\;C_{18:2}.\;C_{18:2}(PLL;\;13.2%),\;C_{16:0}.\;C_{18:2}.\;C_{18:1}(PLO;\;11.6%)$ in corn oil, $C_{18:2}.\;C_{18:2}.\;C_{18:2}(LLL;\;18.0%),\;C_{18:1}.\;C_{18:2}.\;C_{18:2}(OLL;\;18.0%),\;C_{16:0}.\;C_{18:2}.\;C_{18:2}(PLL;\;17.1%)$ in safflower oil, $C_{16:0}.\;C_{18:2}.\;C_{18:2}(PLL;\;23.5%),\;C_{16:0}.\;C_{18:2}.\;C_{18:1}(PLO;\;13.8%),\;C_{18:0}.\;C_{18:1}.\;C_{18:1}(SOO;\;13.5%),\;C_{18:1}.\;C_{18:2}.\;C_{18:2}(OLL;\;10.6%)$ in cottonseed oil.

  • PDF

SB202190- and SB203580-Sensitive p38 Mitogen-Activated Protein Kinase Positively Regulates Heat Shock- and Amino Acid Analog-Induced Heat Shock Protein Expression

  • Kim, Sun-Hee;Han, Song-Iy;Oh, Su-Young;Seo, Myoung-Suk;Park, Hye-Gyeong;Kang, Ho-Sung
    • Biomedical Science Letters
    • /
    • v.9 no.2
    • /
    • pp.59-65
    • /
    • 2003
  • When cells are exposed to proteotoxic stresses such as heat shock, amino acid analogs, and heavy metals, they increase the synthesis of the heat shock proteins (HSPs) by activating the heat shock transcription factor 1 (HSF1), whose activity is controlled via multiple steps including homotrimerization, nuclear translocation, DNA binding, and hyperphosphorylation. Under unstressed conditions, the HSF1 activity is repressed through its constitutive phosphorylation by glycogen synthase kinase 3$\beta$ (GSK3$\beta$), extracellular regulated kinase 1/2 (ERK1/2), and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). However, the protein kinase (s) responsible for HSF1 hyperphosphorylation and activation is not yet identified. In the present study, we observed that profile of p38 mitogen-activated protein kinase (p38MAPK) activation in response to heat shock was very similar to those of HSF1 hyperphosphorylation and nuclear translocation. Therefore, we investigated whether p38MAPK is involved in the heat shock-induced HSF1 activation and HSP expression. Here we show that the p38MAPK inhibitors, SB202190 and SB203580, but not other inhibitors including the MEK1/2 inhibitor PD98059 and the PI3-K inhibitor LY294002 and wortmannin, suppress HSF1 hyperphosphorylation in response to heat shock and L-azetidine 2-carboxylic acid (Azc), but not to heavy metals. Furthermore, heat shock-induced HSF1-DNA binding and HSP72 expression was specifically prevented by the p38MAPK inhibitors, but not by the MEK1/2 inhibitor and the PI3-K inhibitors. These results suggest that SB202190- and SB203580-sensitive p38MAPK may positively regulate HSP gene regulation in response to heat shock and amino acid analogs.

  • PDF

Profile of Gene Expression Changes During Doxorubicin Induced Apoptosis of Saos-2 (Saos-2 세포에서 Doxorubicin에 의한 세포사멸 유도과정에서의 유전자 발현 변화)

  • Lim, Jeong-Sook;Bae, Min-Jae;Baek, Suk-Hwan;Kim, Jae-Ryong;Kim, Jung-Hye;Kim, Seong-Yong
    • Journal of Yeungnam Medical Science
    • /
    • v.22 no.2
    • /
    • pp.221-240
    • /
    • 2005
  • Background: Doxorubicin has proved to be a useful chemotherapeutic agent especially for osteogenic sarcoma. It induces cancer cell death via apoptosis. Materials and Methods: To explore and analyze the changes of gene expression during doxorubicin induced apoptosis on human osteogenic sarcoma, Saos-2 cell, cDNA microarray was performed. After treatment with doxorubicin, total RNA was purified and expressed genes were investigated with a 17k human cDNA microarray. Results: For analysis of the cDNA microarray, the genes were filtered using the sum of the median value of Cy3 and Cy5 signal intensity of greater than 800. Expression of 264 genes was changed by more than 2 fold, and the expression of 35 genes was changed more than 3 fold after treatment with doxorubicin. The genes were primarily related to cell death, cell growth and maintenance, signal transduction, cellular component, transport, and metabolism. Conclusion: Treatment with doxorubicin induced expressional change of many genes. Some of the genes might be related with apoptosis directly or indirectly. Further study is now needed to characterize these genes.

  • PDF

Expression Profile of Genes Modulated by Aloe emodin in Human U87 Glioblastoma Cells

  • Haris, Khalilah;Ismail, Samhani;Idris, Zamzuri;Abdullah, Jafri Malin;Yusoff, Abdul Aziz Mohamed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4499-4505
    • /
    • 2014
  • Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence, approaches have been intensively investigated to targeti specific molecular pathways involved in glioblastoma development and progression. Aloe emodin is believed to modulate the expression of several genes in cancer cells. We aimed to understand the molecular mechanisms underlying the therapeutic effect of Aloe emodin on gene expression profiles in the human U87 glioblastoma cell line utilizing microarray technology. The gene expression analysis revealed that a total of 8,226 gene alterations out of 28,869 genes were detected after treatment with $58.6{\mu}g/ml$ for 24 hours. Out of this total, 34 genes demonstrated statistically significant change (p<0.05) ranging from 1.07 to 1.87 fold. The results revealed that 22 genes were up-regulated and 12 genes were down-regulated in response to Aloe emodin treatment. These genes were then grouped into several clusters based on their biological functions, revealing induction of expression of genes involved in apoptosis (programmed cell death) and tissue remodelling in U87 cells (p<0.01). Several genes with significant changes of the expression level e.g. SHARPIN, BCAP31, FIS1, RAC1 and TGM2 from the apoptotic cluster were confirmed by quantitative real-time PCR (qRT-PCR). These results could serve as guidance for further studies in order to discover molecular targets for the cancer therapy based on Aloe emodin treatment.