• 제목/요약/키워드: molecular mechanism

검색결과 2,741건 처리시간 0.024초

Differential Gene Expression Profiling in Human Promyelocytic Leukemia Cells Treated with Benzene and Ethylbenzene

  • Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제4권4호
    • /
    • pp.267-277
    • /
    • 2008
  • Benzene and ethylbenzene (BE), the volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Chronic exposure of benzene is responsible for myeloid leukemia and also ethylbenzene is also recognized as a possible carcinogen. To evaluate the BE effect on human, whole human genome 35 K oligonucleotide microarray were screened for the identification of the differential expression profiling. We identified 280 up-regulated and 201 down-regulated genes changed by more than 1.5 fold by BE exposure. Functional analysis was carried out by using DAVID bioinformatics software. Clustering of these differentially expressed genes were associated with immune response, cytokine-cytokine receptor interaction, toll-like signaling pathway, small cell lung cancer, immune response, apoptosis, p53 signaling pathway and MAPKKK cascade possibly constituting alternative or subordinate pathways of hematotoxicity and immune toxicity. Gene ontology analysis methods including biological process, cellular components, molecular function and KEGG pathway thus provide a fundamental basis of the molecular pathways through BEs exposure in human lymphoma cells. This may provides a valuable information to do further analysis to explore the mechanism of BE induced hematotoxicity.

Structural characterization of As-MIF and hJAB1 during the inhibition of cell-cycle regulation

  • Park, Young-Hoon;Jeong, Suk;Ha, Ki-Tae;Yu, Hak Sun;Jang, Se Bok
    • BMB Reports
    • /
    • 제50권5호
    • /
    • pp.269-274
    • /
    • 2017
  • The biological activities of macrophage migration inhibitory factor (MIF) might be mediated through a classical receptor-mediated or non-classical endocytic pathway. JAB1 (C-Jun activation domain-binding protein-1) promotes the degradation of the tumor suppressor, p53, and the cyclin-dependent kinase inhibitor, p27. When MIF and JAB1 are bound to each other in various intracellular sites, MIF inhibits the positive regulatory effects of JAB1 on the activity of AP-1. The intestinal parasite, Anisakis simplex, has an immunomodulatory effect. The molecular mechanism of action of As-MIF and human JAB1 are poorly understood. In this study, As-MIF and hJAB1 were expressed and purified with high solubility. The structure of As-MIF and hJAB1 interaction was modeled by homology modeling based on the structure of Ace-MIF. This study provides evidence indicating that the MIF domain of As-MIF interacts directly with the MPN domain of hJAB1, and four structure-based mutants of As-MIF and hJAB1 disrupt the As-MIF-hJAB1 interaction.

C-terminal truncated HBx reduces doxorubicin cytotoxicity via ABCB1 upregulation in Huh-7 hepatocellular carcinoma cells

  • Jegal, Myeong-Eun;Jung, Seung-Youn;Han, Yu-Seon;Kim, Yung-Jin
    • BMB Reports
    • /
    • 제52권5호
    • /
    • pp.330-335
    • /
    • 2019
  • Hepatitis B virus (HBV) encoding the HBV x protein (HBx) is a known causative agent of hepatocellular carcinoma (HCC). Its pathogenic activities in HCC include interference with several signaling pathways associated with cell proliferation and apoptosis. Mutant C-terminal-truncated HBx isoforms are frequently found in human HCC and have been shown to enhance proliferation and invasiveness leading to HCC malignancy. We investigated the molecular mechanism of the reduced doxorubicin cytotoxicity by C-terminal truncated HBx. Cells transfected with C-terminal truncated HBx exhibited reduced cytotoxicity to doxorubicin compared to those transfected with full-length HBx. The doxorubicin resistance of cells expressing C-terminal truncated HBx correlated with upregulation of the ATP binding cassette subfamily B member 1(ABCB1) transporter, resulting in the enhanced efflux of doxorubicin. Inhibiting the activity of ABCB1 and silencing ABCB1 expression by small interfering ribonucleic acid (siRNA) increased the cytotoxicity of doxorubicin. These results indicate that elevated ABCB1 expression induced by C-terminal truncation of HBx was responsible for doxorubicin resistance in HCC. Hence, co-treatment with an ABCB1 inhibitor and an anticancer agent may be effective for the treatment of patients with liver cancer containing the C-terminal truncated HBx.

Cellular Toxic Effects and Action Mechanisms Of 2,2', 4,6,6'-Pentachlorobiphenyl

  • Kim Sun-Hee;Shin Kum-Joo;Kim Dohan;Kim Yun-Hee;Ryu Sung Ho;Suh Pann-Ghill
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2004년도 학술대회지
    • /
    • pp.1-20
    • /
    • 2004
  • Polychlorinated biphenyls (PCBs), one a group of persistent and widespread environmental pollutants, have been considered to be involved in immunotoxicity, carcinogenesis, and apoptosis. However, the toxic effects and physical properties of a PCB congener are dependent on the structure. In the present study, we investigate the toxic effects and action mechanisms of PCBs In cells. Among the various congeners tested, 2,2',4,6,6'-PeCB-pentachlorobiphenyl (PeCB), a highly ortho-substituted congener having negligible binding affinity for aryl hydrocarbon receptor (AhR), caused the most potent toxicity and specific effects in several cell types. 2,2',4,6,6'-PeCB induced apoptotic cell death of human monocytic cells, suggesting that PCB-induced apoptosis may be linked to immunotoxicity. In addition, 2,2',4,6,6'-PeCB induced mitotic arrest by interfering with mitotic spindle assembly in NIH3T3 fibroblasts, followed by genetic instability which triggers p53 activation. Which suggests that 2,2',4,6,6'-PeCB may be involved in cancer development by causing genetic instability through mitotic spindle damage. On the other hand, 2,2',4,6,6'-PeCB increased cyclooxygenase-2 (COX-2) involved in cell survival through ERK1/2 MAPK and p53 in Rat-1 fibroblasts and mouse embryonic fibroblasts, triggering compensatory mechanism for abating its toxicity. Taken together, these results demonstrate that PCB congeners of different structure have distinct mechanism of action and 2,2',4,6,6'-PeCB causes several toxicity as well as compensatory mechanism in cells.

  • PDF

공배양의 작용기전에 관한 연구 (Mechanism for the Action of Co-culture)

  • 김미경;주보선;김미선;문화숙;이규섭;김한도
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제27권1호
    • /
    • pp.39-46
    • /
    • 2000
  • Objective: A number of studies to improve in vitro culture conditions have been tried over past ten years by using co-culture system with helper somatic cells. However, the mechanism of coculture is poorly understood. This study was designed to understand the mechanism for the mode of actual action of co-culture using co-culture system of ICR strain's 1-cell embryos with human oviduct epithelial cells by examining the effect of conditioned medium and contactless coculture using a cell culture insert on the embryo development and by measuring the level of superoxide anion from conditioned medium after co-culture. Methods: ICR strain's zygote embryos were cultured in medium alone (control), coculture, conditioned medium, or contactless coculture system for 6 days. Conditioned media (CM) were prepared as following 5 groups. All CM were collected after culturing oviduct cells for 2 days. CM-1 was stored at $-20^{\circ}C$ until use, and CM-2 was prepared just before use as a culture medium. CM-3 was cocultured with embryos and retrieved just before use. CM-4 and CM-5 were derives from the microfilteration of CM-2 and CM-3, respectively, using Microcon-10 (10 kDa molecular weight cut-off). The percentage of the embryos developed to hatched blastocyst stage and the level of superoxide anion in supernatant from medium alone culture (control), coculture, and contactless coculture were measured. Results: The rates of embryo development to the hatched blastocyst stage were significantly higher in coculture (43%) than in control (0%) (p<0.05). The CM-1 group had no embryo development since 2-cell embryonic stage, whereas the CM-2, CM-3, CM-4 and CM-5 groups had the improved development to 4 or 8 cell embryo stage, but the similar rate of development to hatched blastocyst compared to control. The effect of coculture on embryo development was disappeared in the contactless coculture group. The level of superoxide anion was significantly reduced in coculture group compared to control. Conclusion: It is concluded that the present coculture system overcomes the 2-cell block in vitro and improves the embryo development. This beneficial effect may be due to the direct cell-cell contact between embryo and helper cells or the removal of deleterious components from medium rather than the embryotrophic factors.

  • PDF

Repair of UV-induced Cyclobutane Pyrimidine Dimers in Human Mitochonrial DNA-less Cells

  • Ikushima, Takaji;Gu, Ning;Tanizaki, Yuichi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.479-481
    • /
    • 2002
  • UV-induced DNA damage causes cell killing and mutations leading to carcinogenesis. In normal human cells, UV damage such as cyclobutane pyrimidine dimers (CPDs) and primidine-prymidone (6-4) photoproducts are mainly repaired by nucleotide excision repair mechanism. The molecular processes have been well characterized recently. To know the influence of mitochondrial genome on the nucleotide excision repair mechanism against CPDs, we comparatively examined the production of CPDs by UVC irradiation and their repair kinetics in human cells completely lacking mitochondrial DNA (mtDNA) and the parental HeLa S cells. Whole DNA extracted from the cells exposed to UVC was treated with T4-endonuclease V to break the phosphodiester bond adjacent to CPDs. The DNA was electrophoresed in a denaturing agarose gel, which was visualized by ethidium bromide staining. The relative amount of CPDs was determined by image analysis using NIH Image software. MtDNA- less (rho-O) cells were apparently more sensitive to UVC than HeLa S cells, while the level of induction of CPDs in rho-O and HeLa cells was comparable. The repair of CPDs was less efficient in rho-O cells compared with HeLa cells. The residual amount of CPDs after 24-h repair was larger in rho-O cells than in HeLa cells where more than 90 % of CPDs were repaired by then. The non-repaired CPDs would lead to apoptosis in rho-O cells. These results suggest that mitochondrial genome may contribute to some ATP-dependent steps in nucletide excision repair by supplying sufficient ATP which is generated through a respiratory chain in mitochondria.

  • PDF

Enhanced macrophage uptake of radiolabeled liposome triggered by ginseng extracts

  • Lee, Woonghee;Rhee, Man Hee;Yoo, Jeongsoo
    • 대한방사성의약품학회지
    • /
    • 제5권2호
    • /
    • pp.113-119
    • /
    • 2019
  • During tumor progression various immunosuppressive cells are recruited to a tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are particularly abundant in TME. Based on their function, macrophages are categorized into two phenotypes: tumoricidal M1 and tumor-supportive M2. Generally, TAMs closely resemble M2-macrophages and lead to tumor growth. However, their phenotype can be changed by immune activator from M2 to M1 and thus promote tumor immunotherapy. Ginseng extracts are well known for its anti-tumor and anti-inflammatory effects from numerous reported studies. However, the mechanism of their effects is still not clear. Recently, some studies suggested that ginseng extracts induced immune activation as well as anti-tumor activities by a repolarization of activated macrophage from M2 phenotype to M1 phenotype. But, further verification about the mechanism as to how ginseng extracts can stimulate the immune response is still needed. In this study, we investigated whether ginseng extracts can alter the phenotype from M2 macrophages to M1 macrophages in mice by using a radiolabeled liposome. And we also evaluated the potential of radiolabeled liposome as a nuclear imaging agent to monitor the transition of phenotype of TAMs. In conclusion, the ginseng extracts seem to change the phenotype of macrophages from M2 to M1 like as lipopolysaccharide (LPS) in mice.

Structure and action mechanism of humic substances for plant stimulations

  • Jeon, Jong-Rok;Yoon, Ho Young;Shin, Gyeong-Im;Jeong, Song Yi;Cha, Joon-Yung;Kim, Woe-Yeon
    • 한국초지조사료학회지
    • /
    • 제38권3호
    • /
    • pp.175-179
    • /
    • 2018
  • Humic substances that can be obtained from coal resources such as leonardite in a bulk scale have been employed as crop stimulators and soil conditioners. The polymeric organics containing a variety of aromatic and aliphatic structures are known to activate plants in a multifunctional way, thus resulting in enhanced germination rate and abiotic stress resistance concomitant with induction of numerous genes and proteins. Although detailed structural-functional relationship of humic substances for plant stimulations has not been deciphered yet, cutting-edge analytical tools have unraveled critical features of humic architectures that could be linked to the action mechanisms of their plant stimulations. In this review article, we introduce key findings of humic structures and related biological functions that boost plant growth and abiotic stress resistance. Oxygen-based functional groups and plant hormone-like structures combined with labile and recalcitrant carbon backbones are believed to be critical moieties to induce plant stimulations. Some proteins such as HIGH-AFFINITY $K^+$ TRANSPORTER 1, phospholipase A2 and $H^+$-ATPase have been also recognized as key players that could be critically involved in humic substance-driven changes in plant physiology.

cDNA Microarray Analysis of the Differential Gene Expression in the Neuropathic Pain and Electroacupuncture Treatment Models

  • Ko, Je-Sang;Na, Doe-Sun;Lee, Young-Han;Shin, Soon-Young;Kim, Ji-Hoon;Hwang, Byung-Gil;Min, Byung-Il;Park, Dong-Suk
    • BMB Reports
    • /
    • 제35권4호
    • /
    • pp.420-427
    • /
    • 2002
  • Partial nerve injury is the main cause of neuropathic pain disorders in humans. Acupuncture has long been used to relieve pain. It is known to relieve pain by controlling the activities of the autonomic nervous system. Although the mechanism of neuropathic pain and analgesic effects of electroacupuncture (EA) have been studied in a rat model system, its detailed mechanism at the molecular level remains unclear. To identify genes that might serve as either markers or explain these distinct biological functions, a cDNA microarray analysis was used to compare the expression of 8,400 genes among three sample groups. Messenger RNAs that were pooled from the spinal nerves of 7 normal. 7 neuropathic pain, and 7 EA treatment rat models were compared. Sixty-eight genes were differentially expressed more than 2-fold in the neuropathic rat model when compared to the normal, and restored to the normal expression level after the EA treatment. These genes are involved in a number of biological processes, including the signal transduction, gene expression, and nociceptive pathways. Confirmation of the differential gene expression was performed by a dot-blot analysis. Dot-blotting results showed that the opioid receptor sigma was among those genes. This indicates that opioid-signaling events are involved in neuropathic pain and the analgesic effects of EA. The potential application of these data include the identification and characterization of signaling pathways that are involved in the EA treatment, studies on the role of the opioid receptor in neuropathic pain, and further exploration on the role of selected identified genes in animal models.

Molecular and Genomic Approaches on Nickel Toxicity and Carcinogenicity

  • Seo, Young-Rok;Kim, Byung-Joo;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제1권2호
    • /
    • pp.73-77
    • /
    • 2005
  • Nickel is the one of potent environmental, the occupational pollutants and the classified human carcinogens. It is a serious hazard to human health, when the metal exposure. To prevent human diseases from the heavy metals, it is seemingly important that understanding of how nickel exerts their toxicity and carcinogenic effect at a molecular and a genomic level. The process of nickel absorption has been demonstrated as phagocytosis, iron channel and diffusion. Uptaked nickel has been suggested to induce carcinogenesis via two pathways, a direct DNA damaging pathway and an indirect DNA damaging pathway. The former was originated from the ability of metal to generate Reactive Oxygen Species (ROS) and the reactive intermediates to interact with DNA directly. Ni-generated ROS or Nickel itself, interacts with DNAs and histones to cause DNA damage and chromosomal abnormality. The latter was originated from an indirect DNA damage via inhibition of DNA repair, or condensation and methylation of DNA. Cells have ability to protect from the genotoxic stresses by changing gene expression. Microarray analysis of the cells treated with nickel or nickel compounds, show the specific altered gene expression profile. For example, HIF-I (Hypoxia-Inducible Factor I) and p53 were well known as transcription factors, which are upregulated in response to stress and activated by both soluble and insoluble nickel compounds. The induction of these important transcription factors exert potent selective pressure and leading to cell transformation. Genes of metallothionein and family of heat shock proteins which have been known to play role in protection and damage control, were also induced by nickel treatment. These gene expressions may give us a clue to understand of the carcinogenesis mechanism of nickel. Further discussions on molecular and genomic, are need in order to understand the specific mechanism of nickel toxicity and carcinogenicity.