• 제목/요약/키워드: molecular gas

검색결과 872건 처리시간 0.025초

Cool gas and star formation properties of ram pressure stripped galaxy NGC 4522: Insights from the TIGRESS simulation

  • Choi, Woorak;Lee, Bumhyun;Chung, Aeree;Kim, Chang-Goo
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.77.2-77.2
    • /
    • 2019
  • NGC 4522 is one of the best-known examples among the Virgo galaxies undergoing active ram pressure stripping. There have been a number of detailed observational and theoretical studies on this galaxy to constrain its stripping and star formation history. However, the impact of ram pressure on the multi-phased ISM, in particular molecular gas which plays an important role in star formation, is still not fully understood. NGC 4522, as a system where the extra-planar molecular gas is identified, is an ideal case to probe in depth how ram pressure affects molecular gas properties. Aiming to get more theoretical insights on the detailed stripping process of multi-phased ISM and its consequences, we have conducted simulations using the TIGRESS which could reproduce the realistic ISM under comparable conditions as NGC 4522. In this work, we compare the fraction of gas mass to stellar mass, star formation rates and gas depletion time scales of NGC 4522 with those measured from the simulations, not only inside the disk but also in the extra-planar space.

  • PDF

HIGH RESOLUTION OBSERVATIONS OF MOLECULAR GAS DISTRIBUTION IN GALAXIES

  • YUN MIN S.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.159-160
    • /
    • 1996
  • Recent high resolution CO observations of normal and starburst galaxies at Owens Valley Millimeter Array are summarized. While normal disk galaxies generally show exponential distribution which follows the optical blue light, starburst galaxies are often characterized by a compact ($\~$1 kpc) nuclear complex whose surface gas mass density is strongly correlated with the observed large infrared luminosity and thus the ongoing massive star formation.

  • PDF

ASIAA EXTRAGALACTIC STUDY WITH THE SMA

  • MATSUSHITA SATOKI;MAO RUI-QING;MULLER SEBASTIEN;CHOU CHUEN- YI;SAWADA-SATOH SATOKO;TRUNG DINH-VAN;LIM JEREMY;HSIEH PEI-YING;PECK ALISON B.
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.169-172
    • /
    • 2005
  • We present CO(3-2), CO(2-1), and 230 GHz (1.3 mm) continuum images of nearby galaxies taken with the Submillimeter Array (SMA). Our main topic is to study the relation between higher-J molecular gas (e.g., CO J=3-2, 2-1) and nuclear activities (e.g., active galactic nuclei [AGNs] and starbursts). The nearby Seyfert 2 galaxy M51 shows strong CO(3-2) emission from the circumnuclear molecular gas, with an intensity twice as strong as that of the CO(1-0) emission. Strong CO(3-2) emission enhancement suggests that the circum nuclear molecular gas in M51 is warm and dense, which may be related to the AGN activities. Molecular gas in the nearby moderate starburst galaxy NGC 6946 is distributed along the large-scale bar or spiral arms and along the minibar, and the multi-J CO line images show very similar distribution to each other. For this galaxy, there is no clear enhancement in higher-J lines as seen in M51, which may be because NGC 6946 does not have clear AGN activities. Based on the results of these two galaxies, the physical conditions of the circum nuclear molecular gas may be related to the AGN activities. We also observed the nearby edge-on starburst galaxy NGC 3628 and the starburst/Seyfert composite galaxy NGC 4945 with the CO(2-1) line and 230 GHz (1.3 mm) continuum emission. These information will give us some hints for understanding the relation between nuclear activities and circum nuclear molecular gas and dust.

Application of Molecular Simulation Techniques to Estimation of Gas Permeability in Zeolite Membranes

  • Takaba, Hiromitsu;Yamamoto, Atsushi;Nakao, Shin-Ichi
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.33-38
    • /
    • 2004
  • Molecular modeling of gas permeation through zeolite membranes with/without intercrystalline region was carried out. Molecular dynamics (MD) and Monte Carlo (MC) simulations were performed to estimate the diffusion coefficient and adsorption parameters respectively, and our proposed combined method of molecular simulation techniques with a permeation theory (CMP) was used to estimate gas permeability. The calculated permeability of gases (Ar, He, Ne, $N_2$, $0_2$, $CH_4$) at 301 K for the single crystal membrane model was about one order of magnitude larger than the experiential values, although the dependence on the molecular weight of the permeating species agreed with experiments. On the other hand, the estimated permeability using the diffusivity and adsorption parameters of the intercrystalline region model was in good agreement with the experiments. The consistency between experiments and the estimated values means the importance of considering the intercrystalline region and the validity of CMP method to predict the performance of zeolite membranes.

  • PDF

분자동역학법에 의한 기체분자의 속도분포에 관한 연구 (A Study on the Velocity Distribution of Gas Molecules by the Molecular Dynamics Method)

  • 최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.441-450
    • /
    • 2004
  • The velocity distribution of gas molecules from the experimental results was confirmed as the same with the Maxwell-Boltzmann's theoretical results within the experimental error. This study is on the realization of the Maxwell-Boltzmann's velocity distribution of gas molecules by the molecular dynamics(MD) method. The Maxwell-Boltzmann's velocity distribution of gas molecules is extremely important to confirm the equilibrium state because the properties of a thermodynamic system shall be obtained from the system's equilibrium configuration in the MD method. This study is the first trial in the successive researches to calculate the properties of a thermodynamic system by the computer simulations. We confirmed that the maxwell-boltzmann's velocity distribution is developed in some transient time after starting a simulation and dependent on the size of a system. Also it is found that the velocity distribution has no relation with an initial configuration of gas molecules.

$H_2$ Formation from HI by the Ram Pressure

  • 정은정;김성은;정애리
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.70.2-70.2
    • /
    • 2012
  • Ram pressure is known as one of the most efficient mechanisms to deplete the atomic gas of galaxies in the cluster environment. However, the influence of the ram pressure on the molecular gas is not yet clear. Since the molecular gas resides in the galactic center, thus in the deeper potential well, and has higher surface density than the atomic hydrogen, it has been known as that the molecular gas is not easily affected and/or stripped away by the ICM-ISM interaction. To investigate the influence of the ram pressure on the gas properties of galaxies, we compare HI and $^{12}CO$(J=1-0) distribution of NGC 4654 which is experiencing on-going ram pressure and shows distinct HI, CO, optical, and $H_2$ features due to the ram pressure. We discuss the possibilities of H2 formation from HI by the ram pressure and also the star formation activities.

  • PDF

Carbon Molecular Sieve Membranes Dispersed with Nano Particles

  • H.Suda;Ha, K.raya
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.183-186
    • /
    • 2004
  • Nano particles-containing CMS membranes were prepared by pyrolysis of polyimides dispersed uniformly with precursors and their gas separation performances were examined, to elucidate the permeation mechanism and to further improve the gas separation performance. Consequently, it was suggested that the separation performance could be controlled by doping nano-particles in the CMS membranes, and that optimization of various factors, such as the size, content, and dispersion state of the nano particles would contribute for further improvement of the gas separation performance.

  • PDF

Expansion of Dusty H II Regions and Its Impact on Disruption of Molecular Clouds

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.58.3-59
    • /
    • 2015
  • Dynamical expansion of H II regions plays a key role in dispersing surrounding gas and therefore in limiting the efficiency of star formation in molecular clouds. We use analytic methods and numerical simulations to explore expansions of spherical dusty H II regions, taking into account the effects of direct radiation pressure, gas pressure, and total gravity of the gas and stars. Simulations show that the structure of the ionized zone closely follows Draine (2011)'s static equilibrium model in which radiation pressure acting on gas and dust grains balances the gas pressure gradient. Strong radiation pressure creates a central cavity and a compressed shell at the ionized boundary. We analytically solve for the temporal evolution of a thin shell, finding a good agreement with the numerical experiments. We estimate the minimum star formation efficiency required for a cloud of given mass and size to be destroyed by an HII region expansion. We find that typical giant molecular clouds in the Milky Way can be destroyed by the gas-pressure driven expansion of an H II region, requiring an efficiency of less than a few percent. On the other hand, more dense cluster-forming clouds in starburst environments can be destroyed by the radiation pressure driven expansion, with an efficiency of more than ~30 percent that increases with the mean surface density, independent of the total (gas+stars) mass. The time scale of the expansion is always smaller than the dynamical time scale of the cloud, suggesting that H II regions are likely to be a dominant feedback process in protoclusters before supernova explosions occurs.

  • PDF

Preparation, Characterization, and Gas Permeation Properties of Carbon Molecular Sieve Membranes Derived from Dense P84-Polyimide Film

  • Park, Ho-Bum;Nam, Sang-Yong;Jang, Jeong-Gyu;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • 제4권1호
    • /
    • pp.25-35
    • /
    • 2002
  • The gas permeation properties have been studied on carbon molecular sieve (CMS) membranes prepared by pyrolysis of P84 polyimide under various conditions. P84 polyimide shows high permselectivities (O$_2$/N$_2$= 9.17 and CO$_2$/N$_2$= 35) for various gas pairs and has a good processibility because it is easily soluble in high polar solvents such as N-methylpyrrolidinone (NMP), dimethylformamide (DMF), and N,N-dimethylacetamide (DMAc). After pyrolysis under Ar flow, the change in the heating rate was found to affect the gas permeation properties to some extent. The permeabilities of the selected gases were shown to be in the order He > CO$_2$> O$_2$> N$_2$for all the CMS membranes, whose order was in accordance with the order of kinetic gas diameters. It also revealed that the pyrolysis temperature considerably influenced the gas permeation properties of the CMS membranes derived from P84 polyimide. The CMS membranes pyrolized at 700$\^{C}$ temperature exhibited the highest permeability with relatively targe loss in permselectivity. This means that the pyrolysis temperature should be varied in accordance with target gases to be separated.

SF6분자가스의 압력 의존도 (The Dependence on the Gas Pressure in SF6 Molecular Gas)

  • 전병훈
    • 한국전기전자재료학회논문지
    • /
    • 제20권9호
    • /
    • pp.816-820
    • /
    • 2007
  • We measured the electron drift velocity, W, in 0.5% $SF_6-Ar$ mixture over the E/N range from 30 Td to 300 Td and gas pressure range from 0.1 to 0.5 Torr by the double shutter drift tube with a variable drift distance, and calculated over the same E/N and gas pressure range by using the two-term approximation of the Boltzmann equation. The measured and calculated values at different gas pressure at each E/N was appreciable dependence in the results on the gas pressure.