• Title/Summary/Keyword: molecular functions

Search Result 1,395, Processing Time 0.026 seconds

Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

  • Park, Hyeong Cheol;Lee, Shinyoung;Park, Bokyung;Choi, Wonkyun;Kim, Chanmin;Lee, Sanghun;Chung, Woo Sik;Lee, Sang Yeol;Sabir, Jamal;Bressan, Ray A.;Bohnert, Hans J.;Mengiste, Tesfaye;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.40-50
    • /
    • 2015
  • In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.

A pathogen-induced osmotin-like protein gene, CAOSMl, from pepper: Differential expression and in situ localization in pepper tissues during pathogen infection and abiotic stresses

  • Hong, J.K.;Jung, H.W.;Lee, B.K.;Lee, S.C.;Hwang, B.K.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.78.1-78
    • /
    • 2003
  • An osmotin-like protein (CAOSMl) gene was isolated from pepper leaves infected with the avirulent strain Bv5-4a of Xmthomonas campestris pv. vesicatoria. The cDNA encodes a polypeptide of 250 amino acids with a molecular mass of 27, 361 Da. Its amino acid sequence is highly homologous to various osmotin-like proteins from other plant species. The CAOSMl gene expression was organ- and tissue-specifically regulated In pepper plants. The CAOSMl mRNA was intensely localized in the endodermis area of root tissue and in the phloem cells of vascular bundles of red fruit tissue, but not in leaf, stem, and green fruit tissues of healthy pepper plants. Infection by X. c. pv vesintoria, Colletotrichum coccodes, or Phytopkhora capsici iinduced CAOSMl transcription in the leaf or stem tissues. Expression of the CAOSMl gene was somewhat higher in the incompatible than the compatible interactions of pathogens with pepper. The CAOSMl mRNA was prevalently localized in the phloem cells of the vascular bundle of leaf tissues infected by C. coccodes. The CAOSMl gene was activated in leaf tissues by treatment with ethylene, methyl jasmonate, high salinity, cold acclimation and mechanical wounding, but not by abscisic acid (ABA) and drought. These results indicate that the pepper CAOSMl protein functions in response to Pathogens and some abiotic stresses in pepper plants

  • PDF

Current status and prospects of genomics and bioinformatics in grapes (포도 유전체 연구현황 및 전망)

  • Hur, Youn Young;Jung, Sung Min;Yun, Hae Keun
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.298-311
    • /
    • 2015
  • Grape is one of the important fruit crops around the world, and exposed to disease and pests, and internal or environmental stresses in the vineyards. Breeding and cultivation of new varieties of high quality-grapes resistant to diseases and pests and tolerant to stresses are the most important steps in the grape production. However, conventional breeding has laborious and time-consuming procedures in maintaining and selecting seedlings in the fields. Development of molecular breeding technology through understanding of molecular mechanism of useful traits can be used as an alternative strategy to improve the efficiency of grape breeding program by cross hybridization in grape development programs. The completion of the grape genome sequencing project provided the way to discover the novel genes and to analyze their functions. Comparative genomics, transcriptomic analysis, and the genome-wide identification and analysis of useful genes as well as development of molecular marker for valuable traits could provide novel insights into fruit quality and the responses to diseases and stresses, and can be used as important information in molecular breeding programs for grape development.

Differential Effects of Tautomycetin and Its Derivatives on Protein Phosphatase Inhibition, Immunosuppressive Function and Antitumor Activity

  • Niu, Mingshan;Sun, Yan;Liu, Bo;Tang, Li;Qiu, Rongguo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.145-151
    • /
    • 2012
  • In the present work, we studied the structure-activity relationship (SAR) of tautomycetin (TMC) and its derivatives. Further, we demonstrated the correlation between the immunosuppressive fuction, anticancer activity and protein phosphatase type 1 (PP1) inhibition of TMC and its derivatives. We have prepared some TMC derivatives via combinatorial biosynthesis, isolation from fermentation broth or chemical degradation of TMC. We found that the immunosuppressive activity was correlated with anticancer activity for TMC and its analog compounds, indicating that TMC may home at the same targets for its immunosuppressive and anticancer activities. Interestingly, TMC-F1, TMC-D1 and TMC-D2 all retained significant, albeit reduced PP1 inhibitory activity compared to TMC. However, only TMC-D2 showed immunosuppressive and anticancer activities in studies carried out in cell lines. Moreover, TMC-Chain did not show any significant inhibitory activity towards PP1 but showed strong growth inhibitory effect. This observation implicates that the maleic anhydride moiety of TMC is critical for its phosphatase inhibitory activity whereas the C1-C18 moiety of TMC is essential for the inhibition of tumor cell proliferation. Furthermore, we measured $in$ $vivo$ phosphatase activities of PP1 in MCF-7 cell extracts treated with TMC and its related compounds, and the results indicate that the cytotoxicity of TMC doesn't correlate with its $in$ $vivo$ PP1 inhibition activity. Taken together, our study suggests that the immunosuppressive and anticancer activities of TMC are not due to the inhibition of PP1. Our results provide a novel insight for the elucidation of the underlying molecular mechanisms of TMC's important biological functions.

Molecular Analysis and Expression Patterns of the 14-3-3 Gene Family from Oryza Sativa

  • Yao, Yuan;Du, Ying;Jiang, Lin;Liu, Jin-Yuan
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.349-357
    • /
    • 2007
  • The ubiquitous family of 14-3-3 proteins functions as regulators in a variety of physiological processes. Eight rice 14-3-3 genes, designated OsGF14a through h, were identified from an exhaustive search of the genome database. Comparisons of deduced amino acid sequences reveal a high degree of identity among members of the OsGF14 family and reported Arabidopsis 14-3-3 proteins. A phylogenetic study indicates that OsGF14s contain both $\varepsilon$ and non-$\varepsilon$ forms, which is also confirmed by a structural analysis of OsGF14 genes. Furthermore, transcripts of OsGF14b, OsGF14c, OsGF14d, OsGF14e, OsGF14f and OsGF14g were detected in rice tissues. Their different expression patterns, the different effects of environmental stresses and plant hormones on their transcription levels, and the different complementary phenotypes in yeast 14-3-3 mutants not only indicates that OsGF14s are responsive to various stress conditions and regulated by multiple signaling pathways, but also suggests that functional similarity and diversity coexist among the members of OsGF14 family.

Translocation and Phosphorylation of Calcyclin Binding Protein during Retinoic Acid-induced Neuronal Differentiation of Neuroblastoma SH-SY5Y Cells

  • Wu, Jing;Tan, Xinyu;Peng, Xiaozhong;Yuan, Jiangang;Qiang, Boqin
    • BMB Reports
    • /
    • v.36 no.4
    • /
    • pp.354-358
    • /
    • 2003
  • For better understanding of functions of the Calcyclin Binding Protein (CacyBP) and exploring its possible roles in neuronal differentiation, the subcellular localization of human CacyBP was examined in retinoic acid(RA)-induced and uninduced neuroblastoma SH-SY5Y cells. Immunostaining indicated that CacyBP was present in the cytoplasm of uninduced SH-SY5Y cells, in which the resting $Ca^{2+}$ concentration was relatively lower than that of RA-induced cells. After the RA induction, immunostaining was seen in both the nucleus and cytoplasm. In the RA-induced differentiated SH-SY5Y cells, CacyBP was phosphorylated on serine residue(s), while it existed in a dephosphorylated form in normal (uninduced) cells. Thus, the phosphorylation of CacyBP occurs when it is translocated to the nuclear region. The translocation of CacyBP during the RA-induced differentiation of SH-SY5Y cells suggested that this protein might play a role in neuronal differentiation.

ALEX1 Regulates Proliferation and Apoptosis in Breast Cancer Cells

  • Gao, Yue;Wu, Jia-Yan;Zeng, Fan;Liu, Ge-Li;Zhang, Han-Tao;Yun, Hong;Song, Fang-Zhou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3293-3299
    • /
    • 2015
  • Background: Arm protein lost in epithelial cancers, on chromosome X (ALEX) is a novel subgroup within the armadillo (ARM) family, which has one or two ARM repeat domains as opposed to more than six-thirteen repeats in the classical Armadillo family members. Materials and Methods: In the study, we explore the biological functions of ALEX1 in breast cancer cells. Overexpression of ALEX1 and silencing of ALEX1 were performed with SK-BR3 and MCF-7 cell lines. Cell proliferation and colony formation assays, along with flow cytometry, were carried out to evaluate the roles of ALEX1. Results: ALEX1 overexpression in SK-BR3 breast cancer cells inhibited proliferation and induced apoptosis. Furthermore, depletion of ALEX1 in MCF-7 breast cancer cells increased proliferation and inhibited apoptosis. Additional analyses demonstrated that the overexpression of ALEX1 activated the intrinsic apoptosis cascades through up-regulating the expression of Bax, cytosol cytochrome c, active caspase-9 and active caspase-3 and down-regulating the levels of Bcl-2 and mitochondria cytochrome c. Simultaneouly, silencing of ALEX1 inhibited intrinsic apoptosis cascades through down-regulating the expression of Bax, cytosol cytochrome c, active caspase-9, and active caspase-3 and up-regulating the level of Bcl-2 and mitochondria cytochrome c. Conclusions: Our data suggest that ALEX1 as a crucial tumor suppressor gene has been involved in cell proliferation and apoptosis in breast cancer, which may serve as a novel candidate therapeutic target.

A Mutation of cdc-25.1 Causes Defects in Germ Cells But Not in Somatic Tissues in C. elegans

  • Kim, Jiyoung;Lee, Ah-Reum;Kawasaki, Ichiro;Strome, Susan;Shim, Yhong-Hee
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • By screening C. elegans mutants for severe defects in germline proliferation, we isolated a new loss-of-function allele of cdc-25.1, bn115. bn115 and another previously identified loss-of-function allele nr2036 do not exhibit noticeable cell division defects in the somatic tissues but have reduced numbers of germ cells and are sterile, indicating that cdc-25.1 functions predominantly in the germ line during postembryonic development, and that cdc-25.1 activity is probably not required in somatic lineages during larval development. We analyzed cell division of germ cells and somatic tissues in bn115 homozygotes with germline-specific anti-PGL-1 immunofluorescence and GFP transgenes that express in intestinal cells, in distal tip cells, and in gonadal sheath cells, respectively. We also analyzed the expression pattern of cdc-25.1 with conventional and quantitative RT-PCR. In the presence of three other family members of cdc-25.1 in C. elegans, defects are observed only in the germ line but not in the somatic tissues in cdc-25.1 single mutants, and cdc-25.1 is expressed predominantly, if not exclusively, in the germ line during postembryonic stages. Our findings indicate that the function of cdc-25.1 is unique in the germ line but likely redundant with other members in the soma.

Extracellular Proteome Profiling of Bacillus pumilus SCU11 Producing Alkaline Protease for Dehairing

  • Wang, Chao;Yu, Shiqiang;Song, Ting;He, Tingting;Shao, Huanhuan;Wang, Haiyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1993-2005
    • /
    • 2016
  • Bacillus pumilus is one of the most characterized microorganisms that are used for high-level production of select industrial enzymes. A novel B. pumilus SCU11 strain possessing high alkaline protease activity was obtained in our previous work. The culture supernatant of this strain showed efficient dehairing capability with minimal collagen damage, indicating promising potential applications in the leather industry. In this study, the strain's extracellular proteome was identified by LC-MS/MS-based shotgun proteomic analysis, and their related secretory pathways were characterized by BLAST searches. A total of 513 proteins, including 100 actual secreted and 413 intracellular proteins, were detected in the extracellular proteome. The functions of these secreted proteins were elucidated and four complete secretory systems (Sec, Tat, Com, and ABC transporter) were proposed for B. pumilus. These data provide B. pumilus a comprehensive extracellular proteome profile, which is a valuable theoretical and applicative basis for future genetic modifications and development of industrial enzymes.

Screening of novel alkaloid inhibitors for vascular endothelial growth factor in cancer cells: an integrated computational approach

  • Shahik, Shah Md.;Salauddin, Asma;Hossain, Md. Shakhawat;Noyon, Sajjad Hossain;Moin, Abu Tayab;Mizan, Shagufta;Raza, Md. Thosif
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.6.1-6.10
    • /
    • 2021
  • Vascular endothelial growth factor (VEGF) is expressed at elevated levels by most cancer cells, which can stimulate vascular endothelial cell growth, survival, proliferation as well as trigger angiogenesis modulated by VEGF and VEGFR (a tyrosine kinase receptor) signaling. The angiogenic effects of the VEGF family are thought to be primarily mediated through the interaction of VEGF with VEGFR-2. Targeting this signaling molecule and its receptor is a novel approach for blocking angiogenesis. In recent years virtual high throughput screening has emerged as a widely accepted powerful technique in the identification of novel and diverse leads. The high resolution X-ray structure of VEGF has paved the way to introduce new small molecular inhibitors by structure-based virtual screening. In this study using different alkaloid molecules as potential novel inhibitors of VEGF, we proposed three alkaloid candidates for inhibiting VEGF and VEGFR mediated angiogenesis. As these three alkaloid compounds exhibited high scoring functions, which also highlights their high binding ability, it is evident that these alkaloids can be taken to further drug development pipelines for use as novel lead compounds to design new and effective drugs against cancer.