• Title/Summary/Keyword: molecular evidence

Search Result 908, Processing Time 0.033 seconds

Microtine Rodent-Borne Hantavirus from Poland and Korea: Molecular Characterization and Phylogenetic Analysis (Tula 한타바이러스의 분자생물학적 특성분석 및 국내 밭쥐아과 설치류가 매개하는 새로운 한타바이러스)

  • Song, Jin-Won;Yoon, Jae-Kyung;Kim, Sang-Hyun;Kim, Jong-Hun;Lee, Young-Eun;Song, Ki-Joon;Baek, Luck-Ju;Kordek, Radzislaw;Liberski, Pawel P.;Yanagihara, Richard;Lee, Yong-Ju
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.3
    • /
    • pp.275-285
    • /
    • 1998
  • Based on the geographic range and distribution of its rodent reservoir host, the European common vole (Microtus arvalis), Tula virus is likely to be widespread throughout Eurasia. Tula virus-infected voles have been captured in Central Russia, Austria, Czech and Slovak Republics, and the former Yugoslavia. Although serologic evidence for Hantaan (HTN) or Seoul (SEO) virus infection can be found in the vast majority of the more than 300 cases of hemorrhagic fever with renal syndrome (HFRS) occurring annually in Korea, approximately 4% of Korean patients with HFRS show a more than 4-fold higher antibody titer to Puumala (PUU) virus than to HTN or SEO virus by double-sandwich IgM ELISA, suggesting the existence of pathogenic Puumala-related hantaviruses in Korea. To further define the geographic distribution and genetic diversity of Tula virus in Eurasia and to investigate the existence of previously unrecognized Microtus-borne hantavirus in Korea, arvicolid rodents were captured in Lodz, Poland in 1995 and in Yunchon-kun, Kyungki-do during April to May, 1998. In addition, sera from 18 Korean HFRS patients who showed higher (or the same) antibody titer to Tula virus than HTN and SEO viruses were examined for hantavirus RNA by RT-PCR. Hantaviral sequences were not detected in any of the 18 patients or in 35 reed voles (Microtus fortis) in Korea. Alignment and comparison of a 208-nucleotide region of the S segment, amplified from lung tissues of two hantavirus-seropositive Marvalis captured in Poland, revealed $80.8{\sim}83.2%$ sequence similarity, respectively, with Tula virus strains from Central Russia and the Czech and Slovak Republics. Phylogenetic analysis indicated that the newfound Tula virus strains from Poland were closely related to other Tula hantaviruses from Eurasia.

  • PDF

Ghrelin Attenuates Dexamethasone-induced T-cell Apoptosis by Suppression of the Glucocorticoid Receptor (덱사메타손에 의해 유발된 흉선 T세포사멸에 대한 그렐린의 세포사멸억제효과)

  • Lee, Jun Ho
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1356-1363
    • /
    • 2014
  • Ghrelin is a 28 amino acid orexigenic peptide hormone that is secreted predominantly by tX/A cells in the stomach, and it plays a major role in energy homeostasis. Activated ghrelin has an n-octanoyl group covalently linked to the hydroxyl group of the Ser3 residue, which is critical for its binding to the G-protein coupled growth hormone secretagogue receptor-1a (GHS-R1a). According to recent reports, both ghrelin and its receptor, GHS-R1a, are expressed by a variety of immune cells, including T- and B-lymphocytes, monocytes, and dendritic cells, and ghrelin stimulation of leukocytes provides a potent immunomodulatory signal controlling systemic and age-associated inflammation and thymic involution. Here, we report that ghrelin protected murine thymocytes from dexamethasone (DEX)-induced cell death both in vivo and in vitro. Subsequently, we explored the molecular mechanisms of the antiapoptotic effect of ghrelin. According to our experiments, ghrelin inhibited the expression of proapoptotic proteins via the regulation of glucocorticoid receptor (GR) phosphorylation. As a result, ghrelin inhibited the proapoptotic activation of proteins, such as Caspase-3, PARP, and Bim. These data suggest that ghrelin, through GHS-R, inhibits the pathway to apoptosis by regulation of the proapoptotic protein activation signal pathway. They provide evidence that blocking apoptosis is an essential function of ghrelin during the development of thymocytes.

Suppression of the Expression of Cyclooxygenase-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists by 6-Shogaol (6-Shogaol의 Toll-like receptor 2, 3, 4 agonists에 의해서 유도된 cyclooxygenase-2 발현 억제)

  • Kim, Jeom-Ji;An, Sang-Il;Lee, Jeon-Su;Yun, Sae-Mi;Lee, Mi-Yeong;Yun, Hyeong-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.332-336
    • /
    • 2008
  • Ginger is widely used as a traditional herbal medicine. Both ginger and its extracts have been used to treat many chronic inflammatory conditions via the inhibition of nuclear factor-kappa B (NF-${\kappa}B$) activation, which results in the suppression of cyclooxygenase-2 (COX-2) expression. However, the mechanisms as to how ginger extracts mediate their health effects are largely unknown. Toll-like receptors (TLRs) trigger anti-microbial innate immune responses, recognizing conserved microbial structural molecules that are known as pathogen-associated molecular patterns. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$. The activation of NF- ${\kappa}B$ leads to the induction of inflammatory gene products, including cytokines and COX-2. This study reports the biochemical evidence that 6-shogaol, an active compound in ginger, inhibits NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Furthermore, 6-shogaol inhibited NF-${\kappa}B$ activation induced by the following downstream signaling components of the TLRs: MyD88, $IKK{\beta}$, and p65. These results imply that ginger can modulate immune responses that could potentially modify the risk of many chronic inflammatory diseases.

Environmental risk assessment of genetically modified Herbicide-Tolerant zoysiagrass (Event: Jeju Green21) (제초제저항성 들잔디(Zoysia japonica Steud.) 이벤트 Jeju Green21의 환경위해성평가)

  • Bae, Tae-Woong;Kang, Hong-Gyu;Song, In-Ja;Sun, Hyeon-Jin;Ko, Suk-Min;Song, Pill-Soon;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.105-116
    • /
    • 2011
  • Transgenic zoysiagrass (Zoysia japonica Steud.) expressing the bar gene inserted in the plant genome has been generated previously through Agrobacterium tumefaciens-mediated transformation. The GM zoysiagrass (event: JG21) permits efficient management of weed control of widely cultivated zoysiagrass fields, reducing the frequency and cost of using various herbicides for weed control. Now we have carried out the environmental risk assessment of JG21 prior to applying to the governmental regulatory agency for the commercial release of the GM turf grass outside of test plots. The morphological phenotypes, molecular analysis, weediness and gene flow from each test plot of JG21 and wild-type zoysiagrasses have been evaluated by selectively analyzing environmental effects. There were no marked differences in morphological phenotypes between JG21 and wild-type grasses. The JG21 retained its stable integration in the host plant in T1 generation, exhibiting a 3:1 segregation ratio according to the Mendelian genetics. We confirmed the copy number (1) of JG21 by using Southern blot analysis, as the transgenic plants were tolerant to ammonium glufosinate throughout the culture period. From cross-fertilization and gene flow studies, we found a 9% cross-pollination rate at the center of JG21 field and 0% at distances over 3 m from the field. The JG21 and wild-type zoysiagrass plants are not considered "weed" because zoysiagrasses generally are not dominant and do not spread into weedy areas easily. We assessed the horizontal gene transfer (HGT) of the transgene DNA to soil microorganisms from JG21 and wild-type plants. The bar gene was not detected from the total genomic DNA extracted from each rhizosphere soil of GM and non-GM Zoysia grass fields. Through the monitoring of JG21 transgene's unintentional release into the environment, we found no evidence for either pollen mediated gene flow of zoysiagrass or seed dispersal from the test field within a 3 km radius of the natural habitat.

Process Optimization of PECVD SiO2 Thin Film Using SiH4/O2 Gas Mixture

  • Ha, Tae-Min;Son, Seung-Nam;Lee, Jun-Yong;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.434-435
    • /
    • 2012
  • Plasma enhanced chemical vapor deposition (PECVD) silicon dioxide thin films have many applications in semiconductor manufacturing such as inter-level dielectric and gate dielectric metal oxide semiconductor field effect transistors (MOSFETs). Fundamental chemical reaction for the formation of SiO2 includes SiH4 and O2, but mixture of SiH4 and N2O is preferable because of lower hydrogen concentration in the deposited film [1]. It is also known that binding energy of N-N is higher than that of N-O, so the particle generation by molecular reaction can be reduced by reducing reactive nitrogen during the deposition process. However, nitrous oxide (N2O) gives rise to nitric oxide (NO) on reaction with oxygen atoms, which in turn reacts with ozone. NO became a greenhouse gas which is naturally occurred regulating of stratospheric ozone. In fact, it takes global warming effect about 300 times higher than carbon dioxide (CO2). Industries regard that N2O is inevitable for their device fabrication; however, it is worthwhile to develop a marginable nitrous oxide free process for university lab classes considering educational and environmental purpose. In this paper, we developed environmental friendly and material cost efficient SiO2 deposition process by substituting N2O with O2 targeting university hands-on laboratory course. Experiment was performed by two level statistical design of experiment (DOE) with three process parameters including RF power, susceptor temperature, and oxygen gas flow. Responses of interests to optimize the process were deposition rate, film uniformity, surface roughness, and electrical dielectric property. We observed some power like particle formation on wafer in some experiment, and we postulate that the thermal and electrical energy to dissociate gas molecule was relatively lower than other runs. However, we were able to find a marginable process region with less than 3% uniformity requirement in our process optimization goal. Surface roughness measured by atomic force microscopy (AFM) presented some evidence of the agglomeration of silane related particles, and the result was still satisfactory for the purpose of this research. This newly developed SiO2 deposition process is currently under verification with repeated experimental run on 4 inches wafer, and it will be adopted to Semiconductor Material and Process course offered in the Department of Electronic Engineering at Myongji University from spring semester in 2012.

  • PDF

NF-${\kappa}$ B Activation and Cyclooxygenase-2 Expression Induced by Toll-Like Receptor Agonists can be Suppressed by Isoliquiritigenin (Isoliquiritigenin의 toll-like receptor agonists에 의해서 유도된 NF-${\kappa}$B 활성화와 cyclooxygenase-2 발현 억제)

  • Park, Se-Jeong;Yang, Seung-Ju;Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.220-224
    • /
    • 2009
  • Toll-like receptors(TLRs) are pattern recognition receptors(PRRs) that recognize pathogen-associated molecular patterns(PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}$B, leading to the induction of inflammatory gene products such as COX-2. Licorice (Glycyrrhiza uralensis) has been used for centuries as an herbal medicine. Isoliquiritigenin(ILG), a simple chalcone-type flavonoid, is an active component present in licorice and has been used to treat many chronic diseases. However, the mechanism as to how ILG mediates health effects is still largely unknown. In the present report, we present biochemical evidence that ILG inhibits the NF-${\kappa}$B activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, IKK${\beta}$, and p65. ILG also inhibits TLR agonists-induced COX-2 expression. These results suggest that anti-inflammatory effects of ILG are caused by modulation of the immune responses regulated by TLR signaling pathways.

Genetic signature of strong recent positive selection at interleukin-32 gene in goat

  • Asif, Akhtar Rasool;Qadri, Sumayyah;Ijaz, Nabeel;Javed, Ruheena;Ansari, Abdur Rahman;Awais, Muhammd;Younus, Muhammad;Riaz, Hasan;Du, Xiaoyong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.912-919
    • /
    • 2017
  • Objective: Identification of the candidate genes that play key roles in phenotypic variations can provide new information about evolution and positive selection. Interleukin (IL)-32 is involved in many biological processes, however, its role for the immune response against various diseases in mammals is poorly understood. Therefore, the current investigation was performed for the better understanding of the molecular evolution and the positive selection of single nucleotide polymorphisms in IL-32 gene. Methods: By using fixation index ($F_{ST}$) based method, IL-32 (9375) gene was found to be outlier and under significant positive selection with the provisional combined allocation of mean heterozygosity and $F_{ST}$. Using nucleotide sequences of 11 mammalian species from National Center for Biotechnology Information database, the evolutionary selection of IL-32 gene was determined using Maximum likelihood model method, through four models (M1a, M2a, M7, and M8) in Codeml program of phylogenetic analysis by maximum liklihood. Results: IL-32 is detected under positive selection using the $F_{ST}$ simulations method. The phylogenetic tree revealed that goat IL-32 was in close resemblance with sheep IL-32. The coding nucleotide sequences were compared among 11 species and it was found that the goat IL-32 gene shared identity with sheep (96.54%), bison (91.97%), camel (58.39%), cat (56.59%), buffalo (56.50%), human (56.13%), dog (50.97%), horse (54.04%), and rabbit (53.41%) respectively. Conclusion: This study provides evidence for IL-32 gene as under significant positive selection in goat.

Taxonomy of tribe Neillieae (Rosaceae): Physocarpus (나도국수나무족의 분류: 산국수나무속)

  • Oh, Sang-Hun
    • Korean Journal of Plant Taxonomy
    • /
    • v.45 no.4
    • /
    • pp.332-352
    • /
    • 2015
  • The tribe Neillieae, a small group of about 18 species in the Rosaceae, comprises three taxonomically difficult genera, Neillia, Physocarpus, and Stephanandra. The tribe, characterized by lobed leaves with persistent or deciduous stipules and ovoid, shiny seeds with copious endosperm, is strongly supported as a monophyletic group by a variety of lines of molecular evidence. Due to the high amount of morphological variation across the three genera and the species in tribe Neillieae, conflicting classification schemes and numerous species have been proposed over the past three centuries. However, no comprehensive systematic study of the group, including all species across their geographic ranges, has ever been undertaken. As part of a taxonomic revision of tribe Neillieae, a revision of Physocarpus based on the morphological examination of herbarium specimens, including types, and field observation is presented. Artificial keys, comprehensive nomenclatural treatments, descriptions, distribution maps, and lists of specimens examined are provided. Six species in Physocarpus are recognized. A lectotype is here designated for the following species: Opulaster pubescens, Opulaster ramaleyi, Spiraea opulifolia var. parvifolia, Spiraea opulifolia var. tomentella, Physocarpus michiganensis, and Physocarpus missouriensis.

Black ginseng-enriched Chong-Myung-Tang extracts improve spatial learning behavior in rats and elicit anti-inflammatory effects in vitro

  • Saba, Evelyn;Jeong, Da-Hye;Roh, Seong-Soo;Kim, Seung-Hyung;Kim, Sung-Dae;Kim, Hyun-Kyoung;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.151-158
    • /
    • 2017
  • Background: Chong-Myung-Tang (CMT) extract is widely used in Korea as a traditional herbal tonic for increasing memory capacity in high-school students and also for numerous body ailments since centuries. The use of CMT to improve the learning capacity has been attributed to various plant constituents, especially black ginseng, in it. Therefore, in this study, we have first investigated whether black ginseng-enriched CMT extracts affected spatial learning using the Morris water maze (MWM) test. Their molecular mechanism of action underlying improvement of learning and memory was examined in vitro. Methods: We used two types of black ginseng-enriched CMT extracts, designated as CM-1 and CM-2, and evaluated their efficacy in the MWM test for spatial learning behavior and their anti-inflammatory effects in BV2 microglial cells. Results: Our results show that both black ginseng-enriched CMT extracts improved the learning behavior in scopolamine-induced impairment in the water maze test. Moreover, these extracts also inhibited nitric oxide production in BV2 cells, with significant suppression of expression of proinflammatory cytokines, especially inducible nitric oxide synthase, cyclooxygenase-2, and $interleukin-1{\beta}$. The protein expression of mitogen-activated protein kinase and nuclear $factor-{\kappa}B$ pathway factors was also diminished by black ginseng-enriched CMT extracts, indicating that it not only improves the memory impairment, but also acts a potent anti-inflammatory agent for neuroinflammatory diseases. Conclusion: Our research for the first time provides the scientific evidence that consumption of black ginseng-enriched CMT extract as a brain tonic improves memory impairment. Thus, our study results can be taken as a reference for future neurobehavioral studies.

Caspase-3 Specifically Cleaves $p21^{WAF1/CIP1}$ in the Earlier Stage of Apoptosis in SK-HEP-1 Human Hepatoma Cells

  • Park, Jeong-Ae;Kim, Kyu-Won;Kim, Shin-Il;Lee, Seung-Ki
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.231-243
    • /
    • 1998
  • In the present study, we provide evidence that ginsenoside $Rh_2$ (G-$Rh_2$) as well as staurosporine induces apoptosis of human hepatoma SK-HEP-1 cells by caspase 3-mediated processing of $p21^{WAFI/CIPI}$ in the early stage of apoptosls. Immunoblottings showed that G-$Rh_2$ as well as statrosporine induced the processing of caspase-3 to an active form, pl7. In stable Bcl-2 transfectants however, G-$Rh_2$ induced DNA fragmentation, while staurosporine did not. In the early stage of apoptosis, $p21^{WAFI/CIPI}$ was detected to undergo proteolytic processing specifically conducted by caspase-3. $p21^{WAFI/CIPI}$ translated in vitro was cleaved into a p14 fragment, when incubated with cell extracts obtained from either G-$Rh_2$- or staurosporine-treated cells. Cleavage was equally inhibited in both cases by adding Ac-DEVD-cho, a specific caspase-3 inhibitor, but not by Ac-YVkD-cho, a specific caspase-l inhibitor. Similarly, $p21^{WAFI/CIPI}$ was efficiently leaved by recombinant caspase-3 overexpressed in E. coli. Moreover, the endogenous $p21^{WAFI/CIPI}$ of untreated-cell extracts was also cleaved by recombinant caspase-3. Mutation analysis allowed identification of two caspase-3 cleavage sites, $DHVD^{112}$/L and $SMTD^{149}$/F, which are located within, or near the interaction domains for cyclins, Cdks, and PCNA. Taken together, these results show that G-$Rh_2$ as well as staurosporine increases caspase-3 activity, which in turn directly cleaves $p21^{WAFI/CIPI}$ resulting in elevation of Cdk kinase activity in the early stages of apoptosis. We propose that proteolytic cleavage of $p21^{WAFI/CIPI}$ is a functionally relevant event that allows unleashing the cyclin/Cdk activity from the inhibitor seen in the earlier stage of apoptosis, the event of which may be associated with the triggering mechanism for the execution of apoptosis.

  • PDF