• 제목/요약/키워드: molecular clouds

검색결과 176건 처리시간 0.019초

거대 수소 이온화 영역 CTB 102와 연관된 분자운의 고분해능 관측 (High-Resolution Observations of the Molecular Clouds Associated with the Huge H II Region CTB 102)

  • Kang, Sung-Ju;Marshall, Brandon;Kerton, C.R.;Kim, Youngsik;Choi, Minho;Kang, Miju
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.71.1-71.1
    • /
    • 2019
  • We report the first high-resolution (sub-arcminute) large-scale mapping $^{12}CO$ and $^{13}CO$ observations of the molecular clouds associated with the giant outer Galaxy H II region CTB 102 (KR 1). These observations were made using a newly commissioned receiver on the 13.7-m radio telescope at the Taeduk Radio astronomy Observatory (TRAO). Our observations show that the molecular clouds have a spatial extent of $60{\times}35pc$ and a total mass of $10^{4.8}-10^{5.0}$ solar mass, Infrared data from WISE and 2MASS were used to identify and classify the YSO population associated with ongoing star formation activity within the molecular clouds. Moving away from the H II region, there is an age/class gradient consistent with sequential star formation. The infrared and molecular line data were combined to estimate the star formation efficiency (SFE) of the entire cloud as well as the SFE for various sub regions of the cloud.

  • PDF

TRAO-TIMES: Investigating Turbulence and Chemistry in Two Star-forming Molecular clouds

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Choi, Yunhee;Evans, Neal J. II;Offner, Stella S.R.;Baek, Giseon;Lee, Yong-Hee;Choi, Minho;Kang, Hyunwoo;Cho, Jungyeon;Lee, Seokho;Tatematsu, Ken'ichi;Heyer, Mark H.;Gaches, Brandt A.L.;Yang, Yao-Lun
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.37.2-37.2
    • /
    • 2021
  • Turbulence produces the density and velocity fluctuations in molecular clouds, and dense regions within the density fluctuation are the birthplace of stars. Also, turbulence can produce non-thermal pressure against gravity. Thus, turbulence plays a crucial roles in controlling star formation. However, despite many years of study, the detailed relation between turbulence and star formation remain poorly understood. As part of the Taeduk Radio Astronomy Observatory (TRAO) Key Science Program (KSP), "mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale (TIMES; PI: Jeong-Eun Lee)", we mapped two star-forming molecular clouds, the Orion A and the ρ Ophiuchus molecular clouds, in six molecular lines (13CO 1-0/C18O 1-0, HCN 1-0/HCO+ 1-0, and CS 2-1/N2H+ 1-0) using the TRAO 14-m telescope. We applied the Principal Component Analysis (PCA) to the observed data in two different ways. The first method is analyzing the variation of line intensities in velocity space to evaluate the velocity power spectrum of underlying turbulence. We investigated the relation between the star formation activities and properties of turbulence. The other method is analyzing the variation of the integrated intensities between the molecular lines to find the characteristic correlation between them. We found that the HCN, HCO+, and CS lines well correlate with each other in the integral shaped filament in the Orion A cloud, while the HCO+ line is anti-correlate with the HCN and CS lines in L1688 of the Ophiuchus cloud.

  • PDF

DISTRIBUTION AND KINEMATICS OF FORMALDEHYDE IN DARK CLOUDS IN M17 AND NGC 2024

  • MINN Y. K.;LEE Y. B.
    • 천문학회지
    • /
    • 제27권1호
    • /
    • pp.31-44
    • /
    • 1994
  • The 4.8GHz formaldehyde absorption line in the dark clouds in M17 and NGC 2024 regions has been mapped. In both nebulae, we detected two $H_2CO$ line components. In M17, the 24km $S^{-1}$ cloud is closely associated with the HII region located in front of the radio continuum source, and the 19km $S^{-1}$ cloud is associated with the visual dark clouds with a larger extent which are closer to us. The 19km $S^{-1}$ cloud has a mass motion approaching to the HII region. In both clouds, a velocity gradient from the north-east to the south-west directions is observed. The linewidth has no variation indicating no collapsing motion. In NGC 2024, the 9km $S^{-1}$ feature is extended along the dark bar in front of the bright nebula and a weak second component at 13km $S^{-1}$ is confined to the immediate vicinity of the radio source. Indications are that the 9km $S^{-1}$ cloud is physically associated with the dark bar and the 13km $S^{-1}$ cloud is located behind the radio source. The angular extent, the column density, and the total mass of the clouds are derived. The radial velocities of other molecular lines observed in these clouds are compared.

  • PDF

Chemical properties of cores in different environments; the Orion A, B and λ Orionis clouds

  • Yi, Hee-Weon;Lee, Jeong-Eun;Tie, Liu;Kim, Kee-Tae
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.80.1-80.1
    • /
    • 2017
  • We present preliminary results of KVN single dish telescope observations of 80 dense cores in the Orion molecular cloud complex which contains the Orion A, B, and ${\lambda}$ Orionis cloud. We investigate the behavior of the different molecular tracers and look for chemical variations of cores in the three clouds in order to systematically investigate the effects of stellar feedback. The most commonly detected molecular lines (with the detection rates higher than 50%) are N2H+, HCO+, H13CO+, C2H, HCN, and H2CO. The detection rates of dense gas tracers, N2H+, HCO+, H13CO+, and C2H show the lowest values in the ${\lambda}$ Orionis cloud. We find difference between molecular D/H ratios and N2H+/H13CO+ abundance ratios towards different clouds, and between protostellar cores and starless cores. Eight starless cores in the Orion A and B clouds exhibit high deuterium fractionations, larger than 0.10, while in the ${\lambda}$ Orionis cloud, no cores reveal the high ratio. These chemical properties could support that cores in the ${\lambda}$ Orionis cloud are affected by the photo-dissociation and external heating from the nearby H II region, which is a hint of negative stellar feedback on core formation. The striking difference between the [N2H+]/[H13CO+] ratios leads us to suggest that there are significant evolutionary differences between the Orion A/B and ${\lambda}$ Orionis clouds. In order to examine whether starless cores can be candidates of pre-stellar cores, we compared the core masses estimated from the 850 um emission to their Virial masses calculated from the N2H+ line data and find that most of them are not gravitationally bound in the three clouds.

  • PDF

NEAR-INFRARED SPECTROSCOPY OF CO RO-VIBRATIONAL ABSORPTION TOWARD HEAVILY OBSCURED AGNs

  • Shirahata, Mai;Nakagawa, Takao;Oyabu, Shinki;Usuda, Tomonori
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.169-173
    • /
    • 2017
  • We provide a new physical insight on the hot molecular clouds near the nucleus of the obscured AGNs. We performed near-infrared spectroscopic observations of heavily obscured AGNs in order to reveal physical characteristics of molecular clouds, especially focused on the CO fundamental ro-vibrational absorption around $4.7{\mu}m$. We have made systematic moderate-resolution spectroscopic observations toward 30 representative (U)LIRGs using the AKARI/IRC, and some of the ULIRGs showed the strong CO absorption feature. For three bright (U)LIRGs that show a steep red continuum with the deep CO absorption feature, IRAS 08572+3915, UGC 05101, and IRAS 01250+2832, we have also made high-resolution spectroscopic observations using the Subaru/IRCS. We have successfully detected many absorption lines up to highly excited rotational levels, and these lines are very deep and extremely broad. The derived physical conditions of molecular clouds are extreme; the gas temperature is as high as several 100 to a 1000 K, the $H_2$ column density is larger than $10^{22}cm^{-2}$, and the gas density is greater than $10^7cm^{-3}$. Such hot and dense molecular clouds must exist around the central engine of the AGN.

IGRINS Observations of Star Forming Clouds in NGC 6822 Hubble V

  • Pak, Soojong;Lee, Hye-In;Le, Huynh Anh N.;Lee, Sungho;Chung, Aeree;Kaplan, Kyle;Jaffe, Daniel T.
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.92.2-92.2
    • /
    • 2014
  • NGC 6822 is a dwarf irregular galaxy in the Local Group. Unlike clouds in the Large Magellanic Cloud and the Small Magellanic Cloud, molecular clouds in NGC 6822 are not influenced by the Galactic tidal force. Therefore the star forming processes are only dictated by local conditions. Hubble V is the brightest of the several bright H II region complexes in NGC 6822. The core of Hubble V, surrounded by a molecular cloud complex, contains compact clusters of bright blue stars. During the commissioning runs of the new high-resolution near-infrared spectrometer, IGRINS (Immersion GRating near-INfrared Spectrometer), we observed Hubble V and detected many emission lines from the H II regions and from the photodissociation region at the interface between the ionized gas and the molecular cloud. In this presentation, we report preliminary results of the IGRINS observations. We discuss the implications of the observed lines ratios and kinematics for our understanding of the evolution of star forming molecular clouds.

  • PDF

Physical Properties of Molecular Clouds in NGC 6822 Hubble V

  • Lee, Hye-In;Pak, Soojong;Oh, Heeyoung;Le, Huynh Anh N.;Lee, Sungho;Lim, Beomdu;Tatematsu, Ken'ichi;Park, Sangwook;Mace, Gregory;Jaffe, Daniel T.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.66.4-66.4
    • /
    • 2019
  • NGC 6822 is a dwarf irregular galaxy whose metal abundance is lower than of the Large Magellanic Cloud. Hubble V is the brightest HII complex where molecular clouds surround the core cluster of OB stars. Because of its proximity (d = 500 kpc), we can resolve the star-forming regions on parsec scales (1 arcsec = 2.4 pc). Using the high-resolution (R = 45,000) near-infrared spectrograph, IGRINS, we observed molecular hydrogen emission lines from photo-dissociation regions (PDRs) and $Br{\gamma}$ emission line from ionized regions. In this presentation, we compare our data PDR models in order to derive the density distribution of the molecular clouds on parsec scales and to estimate the total mass of the clouds.

  • PDF

Characteristic Chemical Correlations in Nearby Star-forming Molecular Clouds

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Evans, Neal J. II;Offner, Stella;Heyer, Mark H.;Choi, Yunhee;Lee, Yong-Hee;Baek, Giseon;Choi, Minho;Kang, Hyunwoo;Tatematsu, Ken'ichi;Lee, Seokho;Yang, Yao-Lun;Gaches, Brandt;Chen, How-Huan
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.41.1-41.1
    • /
    • 2020
  • Different molecular lines trace different physical environments (with various densities and temperatures) within molecular clouds (MCs). Therefore, multimolecular line observations are crucial to study the physical and chemical structures of MCs. We observed the Orion A and Ophiuchus clouds in six different molecular lines as a Taeduk Radio Astronomy Observatory Key Science Program (TRAO-KSP), "mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale" (TIMES; PI: Jeong-Eun Lee). Here, we investigate the characteristic relations between the observed lines by performing the Principal Component Analysis (PCA). We also investigate the correlation between the line intensity distributions and the physical parameters, such as the gas column density and dust temperature. Finally, we will discuss how the correlations among different chemical tracers vary with the star formation environments.

  • PDF

BOTTOM-UP MODEL FOR THE FORMATION OF GMC'S

  • SONG GUO-XUAN
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.165-166
    • /
    • 1996
  • A bottom-up model for the formation of GMCs is described, where the observed GMCs are the aggregates of less massive clouds. The aggregates are getting more and more massive in the process of consecutive collision between clouds.

  • PDF

Dispersal of Molecular Clouds by UV Radiation Feedback from Massive Stars

  • 김정규;김웅태
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.38.1-38.1
    • /
    • 2017
  • We report the results of three-dimensional radiation hydrodynamic simulations of star cluster formation in turbulent molecular clouds, with primary attention to how stellar radiation feedback controls the lifetime and net star formation efficiency (SFE) of their natal clouds. We examine the combined effects of photoionization and radiation pressure for a wide range of cloud masses (10^4 - 10^6 Msun) and radii (2 - 80 pc). In all simulations, stars form in densest regions of filaments until feedback becomes strong enough to clear the remaining gas out of the system. We find that the SFE is primarily a function of the initial cloud surface density, Sigma, (SFE increasing from ~7% to ~50% as Sigma increases from ~30 Msun/pc^2 to ~10^3 Msun/pc^2), with weak dependence on the initial cloud mass. Control runs with the same initial conditions but without either radiation pressure or photoionization show that photoionization is the dominant feedback mechanism for clouds typical in normal disk galaxies, while they are equally important for more dense, compact clouds. For low-Sigma clouds, more than 80% of the initial cloud mass is lost by photoevaporation flows off the surface of dense clumps. The cloud becomes unbound within ~0.5-2.5 initial free-fall times after the first star-formation event, implying that cloud dispersal is rapid once massive star formation takes place. We briefly discuss implications and limitations of our work in relation to observations.

  • PDF