• 제목/요약/키워드: molecular clouds

검색결과 176건 처리시간 0.028초

Near-IR Polarimetry Survey of the Large Magellanic Cloud : Photometric Reliability Test

  • 김재영;박수종
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.78.1-78.1
    • /
    • 2012
  • We present near-IR imaging polarimetry of the 5${\times}$9 fields (-39'${\times}$69') centered at 30 Doradus in the Large Magellanic Cloud (LMC), using the InfraRed Survey Facility (IRSF). We obtained polarimetry data in J, H, and Ks bands using the JHKs-simultaneous imaging polarimeter SIRPOL in 2008 December and 2011 December. We measured Stokes parameters of point-like sources to derive the degree of polarization and the polarization position angle. Since our results are suffered from non-photometric weather, we compare the polarization results from 2008 and those from 2011, and examine the photometric reliabilities between the two runs. Our survey data will be compared with molecular and dust maps to reveal the large-scale magnetic field properties in the star-forming clouds.

  • PDF

Report on the Current Status of EAO/JCMT

  • Dempsey, Jessica;Ho, Paul
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.58.3-59
    • /
    • 2017
  • The JCMT is now in its third year of operations under EAO management. During this past year, we continued with calls for regular PI programs as well as the second call for Large Programs. The performance of SCUBA-2 has been improved by replacing internal optical filters. The 230GHz Receiver A is in the process of being replaced by a new closed-cycle system. The SCUBA-2 polarimeter, POL-2, commissioned during the past year, has been working very well in measuring the magnetic field structures in molecular clouds. The JCMT successfully participated in the Event Horizon Telescope experiment during April 2017, which utilized the phased-up ALMA for the first time. The first round of Large Programs are nearing completion, with first publications beginning to be published. The JCMT continues to welcome inputs from the community, and the next users meeting will be held in Seoul in January 2018.

  • PDF

BISTRO and BISTRO-2

  • 권우진
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.79.1-79.1
    • /
    • 2017
  • The B-fields In STar-forming Region Observations (BISTRO) is the 3-year large program of the James Clerk Maxwell Telescope (JCMT) using SCUBA-2 and POL-2, started in 2016. We aim to study the roles of magnetic fields in star formation by observing 16 fields of nearby star forming regions, e.g., Orion and Ophiuchus molecular clouds. The angular resolution and wavelength provided by JCMT (14 arcsecond at 850 micrometer) is ideal to investigate the intermediate scales of magnetic fields (1000-10000 au) associated in cold dense cores and filaments. This year, moreover, we were awarded JCMT time for additional 16 fields (BISTRO-2), which allows us to cover broader physical properties of star forming regions. We report the current status of BISTRO and introduce BISTRO-2.

  • PDF

MASS DISTRIBUTION IN THE CENTRAL FEW PARSECS OF OUR GALAXY

  • Oh, Seung-Kyung;S. Kim, Sung-Soo;Figer, Donald F.
    • 천문학회지
    • /
    • 제42권2호
    • /
    • pp.17-26
    • /
    • 2009
  • We estimate the enclosed mass profile in the central 10 pc of the Milky Way by analyzing the infrared photometry and the velocity observations of dynamically relaxed stellar population in the Galactic center. HST/NICMOS and Gemini Adaptive Optics images in the archive are used to obtain the number density profile, and proper motion and radial velocity data were compiled from the literature to find the velocity dispersion profile assuming a spherical symmetry and velocity isotropy. From these data, we calculate the the enclosed mass and density profiles in the central 10 pc of the Galaxy using the Jeans equation. Our improved estimates can better describe the exact evolution of the molecular clouds and star clusters falling down to the Galactic center, and constrain the star formation history of the inner part of the Galaxy.

Correlation between Magnetic-field directions and intensity gradients in Orion A region

  • Hwang, Jihye;Kim, Jongsoo
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.67.2-67.2
    • /
    • 2018
  • Magnetic fields play an important role in star-forming processes by regulating gravitational collapse. In filamentary structures of star-forming regions, magnetic fields are likely to be aligned with minor axes of filamentary molecular clouds because matter freely moves along magnetic field lines. Orion A region, one of the well-known high-mass star forming regions, has long filament structure. In order to study magnetic field directions with respect to the filamentary structure in Orion A, we have analyzed $850{\mu}m$ dust polarization observations obtained with the James Clerk Maxwell Telescope (JCMT). We found tight correlation of dust intensity gradients and magnetic field directions. It was estimated that 81% of magnetic field segments are aligned with density gradients within 40 degree. In conclusion, we confirmed most of magnetic field segments are perpendicular to the major axis of the filament in Orion A.

  • PDF

SPHEREx Galactic Science: Ice Evolution from Molecular Clouds to Protoplanetary Disks

  • Lee, Jeong-Eun
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.48.1-48.1
    • /
    • 2018
  • SPHEREx의 중요 임무 중 하나는 $0.75{\mu}m$$5{\mu}m$ 사이에서 $H_2O$, CO, $CO_2$, XCN, OCS, 그리고 $CH_3OH$와 같은 얼음 분자의 전천 탐사 스펙트럼을 제공하는 것이다. 이러한 얼음 분자는 성간분자운의 먼지 티끌 표면에서 생성되어 별 탄생의 필연적 산물이며, 행성이 형성되는 원시행성계원반에서 다양한 변화를 겪게 되고, 복잡한 유기분자를 합성하게 된다. 하지만 충분하지 않은 관측 자료로 인해, 얼음 분자의 진화에 대한 이해가 미약한 상태이다. 현재까지는 근적외선에서 충분히 밝은 100 여개의 배경별이나 원시성에 대해서만 얼음 스펙트럼을 관측할 수 있었다. SPHEREx를 이용한 고감도 전천 탐사 미션은 약 20,000 여개의 배경별과 원시성에 대해 얼음 분자 스펙트럼을 제공할 것이다. 이렇게 100 배 이상 늘어난 샘플 스펙트럼 수로 인해, 얼음 분자의 진화에 대해서 통계적으로 의미있는 연구가 가능해 질 것이다. 본 발표에서는 SPHEREx의 Ice Program을 소개하고, 기대되어지는 결과에 대해서 논의하고자 한다.

  • PDF

Pixel Intensity Histogram Method for Unresolved Stars: Case of the Arches Cluster

  • Shin, Jihye;Kim, Sungsoo S.
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.58.2-58.2
    • /
    • 2014
  • The Arches cluster is a young (2-4 Myr), compact (~1 pc), and massive (${\sim}2{\times}10^4M_{\odot}$) star cluster located ~30 pc away from the Galactic center (GC) in projection. Being exposed to the extreme environment of the GC such as elevated temperature and turbulent velocities in the molecular clouds, strong magnetic fields, and larger tidal forces, the Arches cluster is an excellent target for understanding the effects of star-forming environment on the initial mass function (IMF) of the star cluster. However, resolving stars fainter than ~1 $M_{\odot}$ in the Arches cluster partially will have to wait until an extremely large telescope with adaptive optics in the infrared is available. Here we devise a new method to estimate the shape of the low-end mass function where the individual stars are not resolved, and apply it to the Arches cluster. This method involves histograms of pixel intensities in the observed images. We find that the initial mass function of the Arches cluster should not be too different from that for the Galactic disk such as the Kroupa IMF.

  • PDF

Density distributions and Power spectra of outflow-driven turbulence

  • Kim, Jongsoo;Moraghan, Anthony
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.57.2-57.2
    • /
    • 2014
  • Protostellar jets and outflows are signatures of star formation and promising mechanisms for driving supersonic turbulence in molecular clouds. We quantify outflow-driven turbulence through three-dimensional numerical simulations using an isothermal version of the total variation diminishing code. We drive turbulence in real space using a simplified spherical outflow model, analyze the data through density probability distribution functions (PDFs), and investigate density and velocity power spectra. The real-space turbulence-driving method produces a negatively skewed density PDF possessing an enhanced tail on the low-density side. It deviates from the log-normal distributions typically obtained from Fourier-space turbulence driving at low densities, but can provide a good fit at high densities, particularly in terms of mass-weighted rather than volume-weighted density PDF. We find shallow density power-spectra of -1.2. It is attributed to spherical shocks of outflows themselves or shocks formed by the interaction of outflows. The total velocity power-spectrum is found to be -2.0, representative of the shock dominated Burger's turbulence model. Our density weighted velocity power spectrum is measured as -1.6, slightly less that the Kolmogorov scaling values found in previous works.

  • PDF

LOW-MASS STAR FORMATION: CURRENT STATUS AND FUTURE PROGRESS WITH ALMA

  • Tafalla, Mario
    • 천문학논총
    • /
    • 제33권3호
    • /
    • pp.45-57
    • /
    • 2018
  • Low-mass star-formation studies deal with the birth of individual solar-type stars as it occurs in nearby molecular clouds. While this isolated mode of star formation may not represent the most common form of stellar birth, its study often provides first evidence for the general ingredients of star formation, such as gravitational infall, disk formation, or outflow acceleration. Here I briefly review the current status and the main challenges in our understanding of low-mass star formation, with emphasis in the still mysterious pre-stellar phase. In addition to presenting by-now classical work, I also show how ALMA is starting to play a decisive role driving progress in this field.

AKARI/IRC spectroscopic survey for interstellar ice study

  • Kim, Jaeyeong;Lee, Jeong-Eun;Kim, Il-Seok;Aikawa, Yuri;Jeong, Woong-Seob;Lee, Ho-Gyu;Noble, Jennifer A.;Dunham, Michael M.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.41.3-41.3
    • /
    • 2019
  • Ices in interstellar environments are well traced mostly by their absorption features in the near- to mid-infrared spectrum. The infrared camera (IRC) aboard AKARI provides us the near-infrared spectroscopic data which cover $2.5-5.0{\mu}m$ with a spectral resolution of R ~ 120. Our AKARI spectroscopic survey of young stellar objects (YSOs), including low-luminosity protostars and background stars, revealed the absorption features of $H_2O$, $CO_2$, CO, and XCN ice components. We present near-infrared spectra of the observed targets and compare their ice abundances with those previously derived from various YSOs and the background stars behind dense molecular clouds and cores. In addition, we suggest possible science cases for SPHEREx, NASA's new near-infrared space observatory, based on the results from our AKARI IRC spectroscopic study.

  • PDF