• Title/Summary/Keyword: molecular cloud

Search Result 146, Processing Time 0.019 seconds

A HIGHLY DISTURBED MOLECULAR CLOUD S287: I. CO OBSERVATIONS AND KINEMATICS

  • LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.2
    • /
    • pp.147-158
    • /
    • 1994
  • We have obtained high angular resolution maps toward a molecular cloud associated with an HII region S287 and studied mainly kinematics of the cloud. The mapped region is 1.5 square degrees of the cloud in the transitions of $^{12}CO\;and\;^{13}CO\;J=1-0$. We have obtained a large range of mass, $1.3\times10^4M_\bigodot$, to $7.2{\times}10^4M_{\bigodot}$ using three different techniques. The S287 molecular cloud shows a very disturbed feature: velocity field of the cloud is very complicated, and shows several arcs. It is likely that the southern part of cloud is being disrupted by the residing HII region S287 as well as external perturbing sources. In addition to an HII region, five bipolar outflows are also disturbing the molecular gas significantly. The large virial mass and the very disturbed morphology may reflect the fact that the cloud is not gravitationally bound system, as in the case of nearby giant molecular cloud (GMC) G216-2.5. The several arc structure and the filamentary features are possibly driven by external strong stellar winds, and these external perturbing sources may be driving the second generation of star-forming activities on the edges of the S287 molecular cloud.

  • PDF

THE ENVIRONMENT OF TYCHO: POSSIBLE INTERACTION WITH A MOLECULAR CLOUD

  • LEE J.-J.;KOO B.-C.;TATEMATSU K.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.223-224
    • /
    • 2004
  • The Tycho supernova remnant (SNR), as one of the few historical SNRs, has been widely studied in various wavebands and previous observations have shown evidence that Tycho is interacting with a dense ambient medium toward the northeast direction, In this paper, we report our high-resolution (16') $^{12}CO$ observation of the remnant using the Nobeyama 45m radio telescope. The Nobeyama data shows that a large molecular cloud surrounds the SNR along the northeastern boundary. We suggest that the Tycho SNR and the molecular cloud are both located in the Perseus arm and that the dense medium interacting with the SNR is possibly the molecular cloud. We also discuss the possible connection between the molecular cloud and the Balmer-dominated optical filaments, and suggest that the preshock gas may be accelerated within the cosmic ray and/or fast neutral precursor.

ATOMIC CARBON IN THE W 3 GIANT MOLECULAR CLOUD

  • SAKAI TAKESHI;OKA TOMOHARU;YAMAMOTO SATOSHI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.257-260
    • /
    • 2005
  • We have mapped the W 3 giant molecular cloud in the $C^o\;^3P_1-^3 P_o$ ([CI]) line with the Mount Fuji Submillimeter-wave Telescope. The [CI] emission is extended over the molecular cloud, having peaks at three star forming clouds; W 3(Main), W 3(OH), and AFGL 333. The [CI] emission is found to be strong in the AFGL 333 cloud. We have also observed the $C^{18}O,\;CCS,\;N_2H^+$, and $H^{13}CO^+$ lines by using the Nobeyama Radio Observatory 45 m telescope. In the AFGL 333 cloud, we find two massive cores, which are highly gravitationally bound and have no sign of active star formation. The high [$C^o$]/[CO] and [CCS]/[$N_2H^+$] abundance ratios suggest that the AFGL 333 cloud is younger than the W 3(Main) and W 3(OH) clouds.

A STUDY OF MOLECULAR CLOUD ASSOCIATED WITH THE H II REGION Sh 156

  • KANG MEEJOO;LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.33-41
    • /
    • 2005
  • We have conducted observations toward the molecular cloud associated with the H II region Sh 156 in $^{13}CO$(J = 1-0), $C^{18}O$(J = 1-0), and CS(J = 2 -1) using the TRAO 14 m telescope. Combining with existing $^{12}CO$(J = 1- 0) data of the Outer Galaxy Survey, we delineated the physical properties of the cloud. We found that there is a significant sign of interaction between the H II region and the molecular gas. We estimated the masses of the molecular cloud, using three different techniques; the most plausible mass is estimated to be $1.37 {\times} 10^5 M_{\bigodot}$, using a conversion factor of $X = 1.9 {\times} 10^{20}\;cm^{-2} (K\;km\;s^{-1})^{-1}$, and this is similar to virial mass estimate. This implies that the cloud is gravitationally bound and in virial equilibrium even though it is closely associated with the H II region. In addition to existing outflow, we found several MSX and IRAS point sources associated with dense core regions. Thus, more star forming activities other than the existing H II region are also going on in this region.

CO STUDY OF THE H II REGION SHARPLESS 301

  • JUNG JAE HOON;LEE JUNG-Kyu;YOON TAE SEOG;KANG YONG HEE
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.3
    • /
    • pp.157-166
    • /
    • 2001
  • The molecular cloud associated with the H II region S301 has been mapped in the J = 1-0 transitions of $^{12}CO$ and $^{13}CO$ using the 13.7 m radio telescope of Taeduk Radio Astronomy Observatory. The cloud is elongated along the north-south direction with two strong emission components facing the H II region. Its total mass is $8.7 {\times} 10^3 M{\bigodot}$. We find a velocity gradient of the molecular gas near the interface with the optical H II region, which may be a signature of interaction between the molecular cloud and the H II region. Spectra of CO, CS, and HCO+ exhibit line splitting even in the densest part of the cloud and suggests the clumpy structure. The radio continuum maps show that the ionzed gas is distributed with some asymmetry and the eastern part of the H II region is obscured by the molecular cloud. We propose that the S301 H II region is at the late stage of the champagne phase, but the second generation of stars has not yet been formed in the postshock layer.

  • PDF

Detection of the fluorescent emission of hydrogen in the Taurus cloud

  • Dae-Hui Lee;In-Su Yuk;Jang-Hyeon Park;Ho Jin;Gwang-Il Seon;Uk-Won Nam;Won-Yong Han;Gyeong-Uk Min;Gwang-Seon Yu
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.99-99
    • /
    • 2004
  • We detected and analyzed molecular hydrogen fluorescence in the Taurus Cloud using the Far-ultraviolet Imaging Spectrograph (FIMS) on the STSAT-1 which was launched at SeP. 27 2003. FIMS is optimized for observing diffuse emission lines in the interstellar medium in the wavelength bands of 900-l150 and 1300-1700 angstrom. The Taurus region is a local molecular cloud which is good for studying molecular hydrogen fluorescence emissions. (omitted)

  • PDF

Core Formation in a Turbulent Molecular Cloud

  • Kim, Jong-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.106.2-106.2
    • /
    • 2011
  • The two competing theories of star formation are based on turbulence and ambipoar diffusion. I will first briefly explain the two theories. There have been analytical (or semi-analytic) models, which estimate star formation rates in a turbulent cloud. Most of them are based on the log-normal density PDF (probability density function) of the turbulent cloud without self-gravity. I will first show that the core (star) formation rate can be increased significantly once self-gravity of a turbulence cloud is taken into account. I will then present the evolution of molecular line profiles of HCO+ and C18O toward a dense core that is forming inside a magnetized turbulent molecular cloud. Features of the profiles can be affected more significantly by coupled velocity and abundance structures in the outer region than those in the inner dense part of the core. During the evolution of the core, the asymmetry of line profiles easily changes from blue to red, and vice versa. Finally, I will introduce a method for incorporating ambipolar diffusion in the strong coupling approximation into a multidimensional magnetohydrodynamic code.

  • PDF

[ N2H+ ] OBSERVATIONS OF MOLECULAR CLOUD CORES IN TAURUS

  • TATEMATSU KEN'ICHI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.279-282
    • /
    • 2005
  • We report the millimeter-wave radio observations of molecular cloud cores in Taurus. The observed line is the $N_2H^+$ emission at 93 GHz, which is known to be less affected by molecular depletion. We have compared starless (IRAS-less) cores with star-forming cores. We found that there is no large difference between starless and star-forming cores, in core radius, linewidth, core mass, and radial intensity profile. Our result is in contrast with the result obtained by using a popular molecular line, in which starless cores are larger and less condensed. We suggest that different results mainly come from whether the employed molecular line is affected by depletion or not. We made a virial analysis, and found that both starless and star-forming cores are not far from the critical equilibrium state, in Taurus. Together with the fact that Taurus cores are almost thermally supported, we conclude that starless Taurus cores evolve to star formation without dissipating turbulence. The critical equilibrium state in the virial analysis corresponds to the critical Bonnor-Ebert sphere in the Bonnor-Ebert analysis (Nakano 1998). It is suggested that the initial condition of the molecular cloud cores/globules for star formation is close to the critical equilibrium state/critical Bonnor-Ebert sphere, in the low-mass star forming region.

CO OBSERVATIONS OF A HIGH LATITUDE HII REGION S73 WITH HIGH RESOLUTION AUTOCORRELATOR

  • LEE YOUNGUNG;CHUNG H.S.;KIM H.R.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.187-188
    • /
    • 1996
  • We have mapped $1 deg^2$ region toward a high latitude HII region S73 (l, b) = ($37^{\circ}.69$, $44^{\circ}.55$) and associated molecular cloud in $^{12}CO$ J = 1 - 0, and $^{13}CO$ J = 1 - 0, using the 3 mm SIS receiver on the 14 m telescope at Taeduk Radio Astronomy Observatory. A high resolution autocorrelator is used to resolve extremely narrow CO linewidths (FWHP < 1 km/s) of the molecular cloud. Though the linewidths are very narrow, it is found that there is systematic velocity gradient in the molecular gas associated with the H II region. Both of $^{12}CO$ and $^{13}CO$ averaged spectra are non-gaussian, and there are obvious blue wings in the spectra. It is remarkable that the linewidths at the blueshifted region are broader than those of the rest of the cloud. The CO emission does match well with the dust emission.

  • PDF

A STUDY OF LYNDS 1299 DARK CLOUD

  • RYU OK-KYUNGI;LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.2
    • /
    • pp.161-171
    • /
    • 1998
  • We have mapped about 1.5 square degree regions of Lynds 1299, a well isolated dark cloud in the Outer Galaxy (l = $122^{\circ}$, b = $-7^{\circ}$), in the J = 1- 0 transition of $^{12}CO$ and $^{13}CO$ with the 13.7 m radio telescope at Taeduk Radio Astronomy Observatory (TRAO). We found that there are two velocity components in the molecular emission, at $V_{LSR} = -52 km S^{-1}$ (Cloud A) and -8.8 km $s^{-1}$ (Cloud B), respectively. We have derived physical parameters of two molecular clouds and discussed three different mass estimate techniques. We found that there are large discrepancies between the virial and LTE mass estimates for both clouds. The large virial mass estimate reflects the fact that both are not gravitationally bound. We adopt the mass of $5.6 {\times}10^3 \;M{\bigodot}$ for Cloud A and $1.2{\times}10^3 \;M{\bigodot}$) for Cloud B using conversion factor. Cloud A is found to be associated with a localized star forming site, and its morphology is well matching with that of far-infrared (FIR) dust emission. It shows a clear ring structure with an obvious velocity gradient. We suggest that it may be a remnant cloud from a past episode of massive star formation. Cloud B is found to be unrelated to Cloud A (d = 800 pc) and has no specific velocity structure. The average dust color temperature of the uncontaminated portion of Cloud A is estimated to be 24$\~$27.4 K. The low dust temperature may imply that there is no additional internal heating source within the cloud. The heating of the cloud is probably dominated by the interstellar radiation field except the region directly associated with the new-born B5 star. Overall, the dust properties of Cloud A are similar to those of normal dark cloud even though it does have star forming activity.

  • PDF