• Title/Summary/Keyword: molding structures

Search Result 154, Processing Time 0.024 seconds

High density line patterns fabricated by thermal imprint (Thermal imprint를 이용한 고밀도 line패턴 형성방법)

  • Lee, Sang-Moon;Kwak, Jung-Bok;Lee, Hwan-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.270-270
    • /
    • 2008
  • We present details of experimental results in the fabrication of high density line patterns, using imprint technique that can provide a simple and comparatively cost-effective manufacturing means. Barrier array structures for display or interconnects for semiconductor applications were the aims of this study. For pattern fabrication, a polymer layer (Ajinomoto GX-13 dielectric film) with a thickness of 38um that can act as either an insulating or a dielectric layer was laminated on a substrate. Fine tracks were then formed using a patterned stamp under isostatic pressure. The line width was ranged between 10 to 60 mm. A self-assembled monolayer (SAM) of fluorinated alkylchlorosilane [$CF_3(CF_2)5(CH_2)2SiCl_3$] as an anti-sticking layer was coated on the surface of the stamp prior to thermal imprint to improve the de-molding characteristic.

  • PDF

Maskless Pattern Fabrication on Si (100) Surface by Using Nano Indenter with KOH Wet Etching (나노인덴터와 KOH 습식 식각 기술을 병용한 Si(100) 표면의 마스크리스 패턴 제작 기술)

  • 윤성원;신용래;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.640-646
    • /
    • 2003
  • The nanoprobe based on lithography, mainly represented by SPM based technologies, has been recognized as potential application to fabricate the surface nanostructures because of its operational versatility and simplicity. The objective of the work is to suggest new mastless pattern fabrication technique using the combination of machining by nanoindenter and KOH wet etching. The scratch option of the nanoindenter is a very promising method for obtaining nanometer scale features on a large size specimen because it has a very wide working area and load range. Sample line patterns were machined on a silicon surface, which has a native oxide on it, by constant load scratch (CLS) of the Nanoindenter with a Berkovich diamond tip, and they were etched in KOH solutions to investigate chemical characteristics of the machined silicon surface. After the etching process, the convex structure was made because of masking effect of the affected layer generated by nano-scratch. On the basis of this fact, some line patterns with convex structures were fabricated. Achieved patterns can be used as a mold that will be used for mass production processes such as nanoimprint or PDMS molding process. All morphological data of scratch traces were scanned using atomic force microscope (AFM).

A study on optimization of the double injection process for temperature measuring part of an ear thermometer (귀 체온계 측온부의 이중 사출 공정 최적화에 관한 연구)

  • Baek, Seung-Ik;Joung, Wuk-chul;Kim, In-Kwan;Shin, Kwang-Il;Kim, Tae-Wan
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • The importance of fast and accurate body temperature measurement with a portable thermometer is increasing. In order to reduce the temperature measurement response time of the infrared ear thermometer, it is very important to develop a structure for a thermometer having an efficient heat transfer path. Most of the existing ear thermometers are single structures that do not consider thermal efficiency, which may delay measurement time and reduce measurement accuracy. Therefore, in this study, the upper part of the thermometer in contact with the ear is made of a thermally conductive material, and the lower part of the thermometer is made of a thermal barrier material so that heat can be concentrated on the infrared sensor of the thermometer by blocking the upper part of the heat. For the efficiency of production, it was intended to be manufactured through the double injection process, and for this purpose, in this paper, the optimal process parameters were derived through the double injection process analysis.

Hydrophobicity Evaluation of Oblique Micro-asperities Structures (경사 돌기 표면의 젖음 특성 평가)

  • Sung Ik Beak;Tae Wan Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.56-60
    • /
    • 2023
  • In this study, we evaluate the anisotropic flow of droplets according to the directionality of asperities. We manufacture a mold with an inclined hole by adjusting the jig angle using a high-power diode laser. Using the manufactured mold, we prepare specimens for wettability studies by the micro molding technique. We fabricate twelve kinds of surfaces with micro-asperities inclined at 0°, 15°, 30°, and 45° for asperity pitches of 100 ㎛, 200 ㎛, and 300 ㎛. We evaluate the static and dynamic behaviors of the droplets as a function of the asperities pitch and inclination angles. The anisotropic effect increases as the pitch increases between asperities, and the anisotropic flow characteristics increase as the inclination angle of the asperities increases. On the surface with hole pitches of 100 ㎛ and 200 ㎛, the contact angle of the droplet shows high hydrophobicity at approximately 160°, but on the surface with the 300-㎛ hole pitch, the contact angle is approximately 110°, indicating that the hydrophobic effect rapidly reduces. Additionally, when the inclination angle of the asperities is approximately 30°, the left and right contact angle deviations of the droplet are the lowest, showing that the roll-off angle is relatively low.

Manufacturing Method for Sensor-Structure Integrated Composite Structure (센서-구조 일체형 복합재료 구조물 제작 방법)

  • Han, Dae-Hyun;Kang, Lae-Hyong;Thayer, Jordan;Farrar, Charles
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.155-161
    • /
    • 2015
  • A composite structure was fabricated with embedded impact detection capabilities for applications in Structural Health Monitoring (SHM). By embedding sensor functionality in the composite, the structure can successfully perform impact localization in real time. Smart resin, composed of $Pb(Ni_{1/3}Nb_{2/3})O_3-Pb(Zr,\;Ti)O_2$ (PNN-PZT) powder and epoxy resin with 1:30 wt%, was used instead of conventional epoxy resin in order to activate the sensor function in the composite structure. The embedded impact sensor in the composite was fabricated using Hand Lay-up and Vacuum Assisted Resin Transfer Molding(VARTM) methods to inject the smart resin into the glass-fiber fabric. The electrodes were fabricated using silver paste on both the upper and bottom sides of the specimen, then poling treatment was conducted to activate the sensor function using a high voltage amplifier at 4 kV/mm for 30 min at room temperature. The composite's piezoelectric sensitivity was measured to be 35.13 mV/N by comparing the impact force signals from an impact hammer with the corresponding output voltage from the sensor. Because impact sensor functionality was successfully embedded in the composite structure, various applications of this technique in the SHM industry are anticipated. In particular, impact localization on large-scale composite structures with complex geometries is feasible using this composite embedded impact sensor.

Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel (혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구)

  • Park, Jeong-Yeon;Koh, Byum-seok;Kim, Ki-Young;Lee, Dong-Mok;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

Investigation of Development of Bumper Back-Beam Using a Thermoplastic Polyolefin (열가소성 폴리올레핀으로 구성된 범퍼 후방 보 개발에 관한 연구)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Park, Gun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.896-905
    • /
    • 2012
  • Recently, the application of the plastic material to automotive components and structures has steadily increased to satisfy demands on the saving of overall weight and the improvement of energy efficiency. The objective of this paper is to investigate the development of a bumper back-beam using a thermoplastic olefin (TPO). The bumper back-beam was designed to be manufactured from the injection molding process. In order to obtain a proper design of the bumper back-beam, three-dimensional finite element analyses were performed for various design alternatives. Stress-strain curves for different strain rates were measured by high speed tensile tests of the TPO to consider strain rate effects in the FEA. The influence of the sectional shape and the rib formation on the contact force-intrusion curves, the deflection and the energy absorption rate of the bumper back-beam was examined. From the results of the examination, a proper design of the bumper back-beam was acquired. The bumper back-beam consisting of TPO was fabricated from the injection moulding process and the vibration welding. Pendulum crash tests were carried out using the fabricated bumper back-beam. The results of the tests showed that the designed bumper back-beam can satisfy requirements of the federal motor vehicle safety standard (FMVSS). Through the comparison of the previously designed bumper back-beam with the newly designed bumper back beam, it was noted that the weight of the designed bumper back-beam is lighter than that of the previously designed bumper back beam by nearly 16 %. In addition, it was considered that the newly designed bumper back beam can improve recycling of the bumper back-beam.

Damage detection of 3D printed mold using the surface response to excitation method

  • Tashakori, Shervin;Farhangdoust, Saman;Baghalian, Amin;McDaniel, Dwayne;Tansel, Ibrahim N.;Mehrabi, Armin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.369-376
    • /
    • 2020
  • The life of conventional steel plastic injection molds is long but manufacturing cost and time are prohibitive for using these molds for producing prototypes of products in limited numbers. Commonly used 3D printers and rapid prototyping methods are capable of directly converting the digital models of three-dimensional solid objects into solid physical parts. Depending on the 3D printer, the final product can be made from different material, such as polymer or metal. Rapid prototyping of parts with the polymeric material is typically cheaper, faster and convenient. However, the life of a polymer mold can be less than a hundred parts. Failure of a polymeric mold during the injection molding process can result in serious safety issues considering very large forces and temperatures are involved. In this study, the feasibility of the inspection of 3D printed molds with the surface response to excitation (SuRE) method was investigated. The SuRE method was originally developed for structural health monitoring and load monitoring in thin-walled plate-like structures. In this study, first, the SuRE method was used to evaluate if the variation of the strain could be monitored when loads were applied to the center of the 3D printed molds. After the successful results were obtained, the SuRE method was used to monitor the artifact (artificial damage) created at the 3D printed mold. The results showed that the SuRE method is a cost effective and robust approach for monitoring the condition of the 3D printed molds.

A Study on the Processing of Long Fiber-Reinforced Composite Materials for Thermoforming On the Correlation Coefficient between Separation and Orientation (Thermoforming용 長纖維强化 複合材料의 成形工程에 관한 硏究 分離$\cdot$配向의 相關계수)

  • 이동기;김정락;김상필;이우일;김이곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1106-1114
    • /
    • 1993
  • A composite material is composed of a reinforcement and a matrix, which determine mechanical characteristics of the molded part. There is no doubt that the properties of a composite material depend not only on the characteristics of the matrix but also on the structure of glass fiber mat and a fiber type of reinforcement. Therefore it is very important to study the composites of reinforcement and the matrix, and to control the fiber type in the process of molding of composite materials. In this study, the specimen was made of a glass fiber mat of 6-7mm thickness by scattering it in the air after cutting the glass fiber mat with needle punching makes change according to the type of needle and the number of times of stretching. First the sheet was made by means of a hot-press after accumulating a matrix and a glass fiber according to each mat structure of glass fiber. It was heated the manufactured sheet with the dry oven and molded it a secondary high temperature compression by a 30 ton oilhydraulic press. A definition of a correlation coefficient is showed up during this period and find it out with the relation of the fiber-matrix separation and the fiber orientation. We studied effects of the glass fiber mat structures on the correlation coefficient.

Problems and Solutions for Ultra-compact LED Package Development (극소형 LED 패키지 개발의 문제점과 해결 방안)

  • Lee, Jong Chan
    • Journal of Industrial Convergence
    • /
    • v.17 no.4
    • /
    • pp.9-14
    • /
    • 2019
  • This paper presents several problems that can occur in the development of the ultra-compact LED package of less than 1.0mm and introduces the solution to them. In the existing mold structure, since the upper and lower core parts are integrated, various errors have occurred due to the roughness of EDM in the small model, which is a limiting factor in further reducing the mold size. As a countermeasure, the prefabricated model was presented in an earlier study to overcome the obstacles to the development of a ultra-compact LED package. In this paper, several problems have been found during the fabrication of prototypes as a starting work to produce the results for the presented model. The types are suggested and the solutions are discussed. And by changing the existing 2-row structure to 3-row structure in the same size lead frame, the aspect of efficient production is considered. The experimental procedure verifies the proposed solution and conducts a test to produce a prototype to confirm that a good product can be produced.