• Title/Summary/Keyword: mold temperature

Search Result 1,164, Processing Time 0.031 seconds

A study on Production of Al Foam by Using of Al Return Scrap for Sound and Vibration Absorption Materials

  • Hur, Bo-Young;Kim, Sang-Youl;Park, Dae-Chol;Jeon, Sung-Hwan;Park, Chan-Ho;Yoon, Ik-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.198-201
    • /
    • 2001
  • Porous structures of aluminum foam have been studied by using return aluminum scrap. The apparent foam shape, foam height, density, pore size and their distributions in various section areas of the experimental samples have been investigated. The sample have been cast into metallic mold, using aluminum foam prepared from a precursor based on pure Al ingot and return aluminum scrap mixed with various amounts of 1-2wt% increasing viscosity and foam agent materials. The process provides for flexibility in design of foam structures via relatively easy control over the amount of hydrogen evolution and the drainage processes which occur during foam formation. This is facilitated by manipulating parameters such as the foaming agent, thermal histories during solidification and mix melt viscosities. A metal for producing the foamed are decomposing a foaming agent in a molten metal such that there is an initial and a subsequent expansion due to foaming agent. It has been found that the Al porous foaming with variation amount of 1∼2wt% foam agent and at 2min holding time, which melting temperature has appeared homogeneous pore size at 650∼700$^{\circ}C$. The compression strength were 10-13 kg/min at 125ppi, and increased by higher pore density. The acoustical performance of the panel made with the foamed aluminum is considerably improved; its absorption coefficient shows NRC 0.6-0.8. It has been found that the Al foam is very preferable for the compactness of the thermal system.

  • PDF

Effects of Grapefruit Seed Extract Pretreatment and Packaging Materials on Quality of Dried Persimmons (자몽종자추출물 처리와 포장방법에 따른 반건시 곶감의 품질 변화)

  • Park Hyung-Woo;Cha Hwan-Soo;Kim Sang-Hee;Park Hye-Ran;Lee Seon-Ah;Kim Yoon-Ho
    • Food Science and Preservation
    • /
    • v.13 no.2
    • /
    • pp.168-173
    • /
    • 2006
  • To investigate the effect of grapefruit seed extract pretreatment and packaging materials on the quality of dried persimmon, dried persimmons were stored for $60{\sim}100$ days at room temperature $(15^{\circ}C)$ after dipping in grapefruit seed extract and then packing with LDPE (low density polyethylene) film and Nylon/LDPE film pouch $(30{\times}30cm^2)$. Weight loss of dried persimmon packaged with Nylon/LDPE film was not exceeded 86% of control. 60% mold occurrence and 50% browness were observed compared to control. There were no significant differences in the firmness, soluble solid content and color between grapefruit seed extract pretreatment and control. Grapefruit seed extracts pretreatment had an effect on the inhibition of color change in Hunters value.

Fabrication of Ni Stamper based on Micro-Pyramid Structures for High Uniformity Light Guide Panel (LGP) (마이크로 피라미드 패턴 응용 도광판 제작을 위한 니켈 스탬퍼 제작에 관한 연구)

  • Kim, Seong-Kon;Yoo, Yeong-Eun;Seo, Young-Ho;Jae, Tae-Jin;Whang, Kyung-Hyun;Choi, Doo-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.174-178
    • /
    • 2006
  • Pyramid shape of micro pattern is applied to the light guide panel (LGP) to enhance the uniformity of the brightness of the LCD. The micro pyramids are molded in intaglio on the surface of the LGP. The size of each pyramid is 5$\mu$m $\times$ 5$\mu$m on bottom and the height is about 3.5$\mu$m. The pyramids are distributed on the LGP surface randomly to be sparser where the light comes in and denser at the opposite side as a result of a simulation using lightools$^{TM}$ Based on this design, a silicon pattern master and a nickel stamper are fabricated by MEMS process and electro plating process. Intaglio micro pyramids are fabricated on the 6' of silicon wafer from the anisotropic etching using KOH and the process time, temperature of the KOH solution, etc are optimized to obtain precise shape of the pattern. A Wi stamper is fabricated from this pattern master by electro plating process and the embossed pyramid patterns turns out to be well defined on the stamper. Adopting this stamper to the mold base with two cavities, 1.8' and 3.6' LGPs are injection molded.

Quality Characteristics of Gamma Irradiated-Imported Orange during Storage at Room Temperature (20℃) (감마선 조사 수입 오렌지의 상온저장(20℃) 중 품질 특성)

  • Kyung, Eun-Ji;Kim, Kyoung-Hee;Yook, Hong-Sun
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.2
    • /
    • pp.183-193
    • /
    • 2014
  • This study is conducted to evaluate the effects of gamma irradiation (0.4, 0.6, 0.8, 1 and 1.5 kGy) on the microbiological, physicochemical and sensory qualities of imported oranges during storage at $20^{\circ}C$ for 15 days. Total aerobic bacteria and yeast/mold counts in non-irradiated oranges increase significantly with increasing storage time. Irradiation has effects on the reduction of microorganism of dose-dependent oranges. The vitamin C contents decrease significantly according to dose-dependent manners and storage times after the gamma irradiation. Sensory evaluation decreases according to dose-ependent manners and storage times, excluding the color. The results suggest that gamma irradiation is effective for ensuring the microbiological safety, but the irradiated oranges more than 1 kGy are not good for physicochemical and sensory qualities. Therefore, irradiated samples of 0.4~0.6 kGy are considered as the optimum-dose for maintaining quality.

Antioxidant Activity and Quality Characteristics of Stew Sauce Mixed with Smilax china L. Extract During Storage (토복령 추출물을 첨가한 소스의 항산화 활성 및 저장 중 품질 특성)

  • Kim, Hyun-Soo;Hwang, Tae-Young;Ahn, Joungjwa
    • The Korean Journal of Community Living Science
    • /
    • v.26 no.3
    • /
    • pp.489-498
    • /
    • 2015
  • This study investigates the effects of a China root (Smilax china L.) extract on the chemical and microbiological characteristics and antioxidant activity of the sausage stew sauce and the soft-tofu stew sauce over a 5-week storage period. Commercial sauces were obtained from the market, and samples were prepared using four different concentrations of the China root extract (0% (control), 0.5%, 1.0%, and 1.5%) and stored at $5^{\circ}C$ and $20^{\circ}C$. Over the 5-week storage period, pH and salinity showed slight changes in both the sausage and soft-tofu stew sauces, but there was no significant difference (p<0.05) regardless of the extract amount and temperature. At 5 weeks, there were significant decreases in the total microbial count in groups with the China root extract (p<0.05) for both the sausage and soft-tofu stew sauces at $5^{\circ}C$. Over the whole storage period, no coliform, yeast, and mold were detected in any sample. S. aureus counts were not detected in 1.0% and 1.5% China root groups at $5^{\circ}C$, but 1.00-1.60 log CFU/g was found in the control and 0.5% groups. DPPH radical scavenging activity at 5 weeks showed an increase with an increase in the amount of the China root extract in both sauces. These results indicate that the China root extract inhibited microbial growth during storage as well as scavenging activity and thus that it can be considered to prolong the shelf life of commercial sauces.

A study for the Effects of Sb Addition on the properties of Cast Iron (I) (주철(鑄鐵)의 성질(性質)에 미치는 Sb 첨가(添加)의 효과(效果)에 관(關)한 연구(硏究)(I);기계적(機械的) 성질(性質)과 Pearlite의 안정화효과(安定化效果)를 중심(中心)으로)

  • Lee, Byeong-Yehp;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.4 no.4
    • /
    • pp.20-29
    • /
    • 1984
  • It is very important to obtain gray and ductile cast irons with completely pearlitic structure by addition more economical alloying elements. In this study, 9 melts of gray iron and 5 melts of Mg-treated ductile cast iron were made according to Sb content (0-0.08% Sb). Each melt were casted to ${\phi}20mm$ test bars in sand mold under the same condition and inspected microstructure, mechanical and thermal properties. The results obtained from this study are as follows: 1. It is confirmed that Sb should be an economical, simple and useful additive for avoiding ferrite in gray and even in ductile cast irons. 2. For gray cast iron, the recommended ladle addition of metallic Sb amounts to 0.05%. At these levels, Sb has no detrimental influence on the mechanical properties of gray cast irons, which are normally modified according to their pearlite content without increasing the chilling tendency. 3. Despite its adverse influence on graphite shape in ductile iron, Sb can be used as a pearlite stabilizing alloying element even in the case of Mg - treated iron. The quantity to be added does not exceed 0.04% in the case of thinwalled castings. 4. The nodule count is increased very much and the shape of graphite particles become remarkably spheroidal. The matrix may be fully pearlitized, except for thin - walled castings, because the high nodule count results inevitably in some ferrite. 5. The $Ac_1$ and pearlite decomposition temperature are rised in accordance with increasing of additive Sb amount.

  • PDF

Finite Element Analysis of Powder Injection Molding Filling Process Including Yield Stress and Slip Phenomena (항복응력과 미끄럼현상을 고려한 분말사출성형 충전공정의 유한요소해석)

  • 박주배;권태헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1465-1477
    • /
    • 1993
  • Powder Injection Molding(PM) is an advanced and complicated technology for manufacturing ceramic or metal products making use of a conventional injection molding process, which is generally used for plastic products. Among many technologies involved in the successful PIM, injection molding process is one of the key steps to form a desired shape out of powder/binder mixtures. Thus, it is of great importance to have a numerical tool to predict the powder injection molding filling process. In this regard, a finite element analysis system has been developed for numerical simulations of filling process of powder injection molding. Powder/polymer mixtures during the filling pro cess of injection molding can be rheologically characterized as Non-Newtonian fluids with a so called yield phenomena and have a peculiar feature of apparent slip phenomena on the wall boundaries surrounding mold cavity. Therefore, in the present study, a physical modeling of the filling process of powder/polymer mixtures was developed to take into account both the yield stress and slip phenomena and a finite element formulation was developed accordingly. The numerical analysis scheme for filling simulation is accomplished by combining a finite element method with control volume technique to simulate the movement of flow front and a finite difference method to calculate the temperature distribution. The present study presents the modeling, numerical scheme and some numerical analysis results showing the effect of the yield stress and slip phenomena.

A Study on the Tool Wear and Prediction of CBN, Poly Crystal and Single Crystal Diamond Tools in Cutting of Nickel (니켈절삭시 CBN, 소결 및 단결정 다이아몬드 공구의 마멸과 예측에 관한 연구)

  • 성기석;김정두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.120-130
    • /
    • 1993
  • Generally, the machinability of materials that have a good mechanical properties is poor. For materials having a high strength, high toughness, high strength in high temperature and wear resistance, it is difficult to remove a chip from work materials. These properties are well shown in a Nickel, so this metal is used in machine materials, semi-conductor industry, metal mold and optical fields etc. But it is limitted in use because of high cost and poor machinability. In this study, the cutting of pure Nickel was conducted to examine wear of CBN, poly crystal diamond (PCD) and single crystal diamond (SCD) tools. From the result, the CBN tool is superior to poly crystal diamond tools or single crystal diamond tools in terms of tool wear and tool wear is predictable from experimental data base.

Design Analysis/Manufacturing /Performance Evaluation of Curved Unsymmetrical Piezoelectric Composite Actuator LIPCA (곡면형 비대칭 압전복합재료 작동기 LIPCA의 설계해석/제작/성능평가)

  • Gu, Nam-Seo;Sin, Seok-Jun;Park, Hun-Cheol;Yun, Gwang-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1514-1519
    • /
    • 2001
  • This paper is concerned with design, manufacturing and performance test of LIPCA ( Lightweight Piezo- composite Curved Actuator) using a top carbon fiber composite layer with near -zero CTE(coefficient of thermal expansion), a middle PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by thigh tweight fiber reinforced plastic layers without losing capabilities to generate high force and large displacement. It is possible to save weight up to about 30% if we replace the metallic backing material by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature (177 $^{circ}C$ after following an autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detached from a flat mold. The analysis method of the cure curvature of LIPCA using the classical lamination theory is presented. The predicted curvatures are fairly in agreement with the experimental ones. In order to investigate the merits of LIPCA, a performance test of both LIPCA and THUNDE$^{TM}$ were conducted under the same boundary conditions. From the experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDERT$^{TM}$.

Nanocrystallization of Cu-Based Bulk Glassy Alloys upon Annealing

  • Pengjun, Cao;Dong, Jiling;Haidong, Wu;Peigeng, Fan;Anruo, Zhou
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.32-36
    • /
    • 2016
  • The Cu-based bulk glassy alloys in Cu-Zr-Ti-Ni systems were prepared by means of copper mold casting. The Cu-based bulk glassy alloys samples were tested by X-ray diffractomer (XRD), differential scanning calorimeter, scanning electron microscopy (SEM), Instron testing machine and Vickers hardness instruments. The result indicated that the prepared Cu-Zr-Ti-Ni alloys were bulk glassy alloys. The temperature interval of supercooled liquid region (${\Delta}T_x$) was about 45.48 to 70.98 K for the Cu-Zr-Ti-Ni alloy. The Vickers hardness was up to 565 HV for the $Cu_{50}Zr_{25}Ti_{15}Ni_{10}$ bulk glassy alloy. The $Cu_{50}Zr_{25}Ti_{15}Ni_{10}$ bulk glassy alloys were annealed in order to obtain nanocrystals. The results showed that the Vickers hardness was raise up to 630 HV from 565 HV. As shown in XRD results, the amorphous alloys changed to nanocrystals, which were $Cu_8Zr_3$, $Cu_3Ti_2$ and CuZr, improved the hardness. The SEM analysis showed that the compression fractured morphology of amorphous alloys was brittle fracture, and the fracture morphology after annealing was ductile fracture. This proved that annealing of amorphous to nanocrystals can improve the plasticity and toughness of amorphous alloys.