• Title/Summary/Keyword: mold shrinkage

Search Result 194, Processing Time 0.022 seconds

STRAIN AND TEMPERATURE CHANGES DURING THE POLYMERIZATION OF AUTOPOLYMERIZING ACRYLIC RESINS

  • Ahn Hyung-Jun;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.709-734
    • /
    • 2001
  • The aims of this experiment were to investigate the strain and temperature changes simultaneously within autopolymerzing acrylic resin specimens. A computerized data acquisition system with an electrical resistance strain gauge and a thermocouple was used over time periods up to 180 minutes. The overall strain kinetics, the effects of stress relaxation and additional heat supply during the polymerization were evaluated. Stone mold replicas with an inner butt-joint rectangular cavity ($40.0{\times}25.0mm$, 5.0mm in depth) were duplicated from a brass master mold. A strain gauge (AE-11-S50N-120-EC, CAS Inc., Korea) and a thermocouple were installed within the cavity, which had been connected to a personal computer and a precision signal conditioning amplifier (DA1600 Dynamic Strain Amplifier, CAS Inc., Korea) so that real-time recordings of both polymerization-induced strain and temperature changes were performed. After each of fresh resin mixture was poured into the mold replica, data recording was done up to 180 minutes with three-second interval. Each of two poly(methyl methacrylate) products (Duralay, Vertex) and a vinyl ethyl methacrylate product (Snap) was examined repeatedly ten times. Additionally, removal procedures were done after 15, 30 and 60 minutes from the start of mixing to evaluate the effect of stress relaxation after deflasking. Six specimens for each of nine conditions were examined. After removal from the mold, the specimen continued bench-curing up to 180 minutes. Using a waterbath (Hanau Junior Curing Unit, Model No.76-0, Teledyne Hanau, New York, U.S.A.) with its temperature control maintained at $50^{\circ}C$, heat-soaking procedures with two different durations (15 and 45 minutes) were done to evaluate the effect of additional heat supply on the strain and temperature changes within the specimen during the polymerization. Five specimens for each of six conditions were examined. Within the parameters of this study the following results were drawn: 1. The mean shrinkage strains reached $-3095{\mu}{\epsilon},\;-1796{\mu}{\epsilon}$ and $-2959{\mu}{\epsilon}$ for Duralay, Snap and Vertex, respectively. The mean maximum temperature rise reached $56.7^{\circ}C,\;41.3^{\circ}C$ and $56.1^{\circ}C$ for Duralay, Snap, and Vertex, respectively. A vinyl ethyl methacrylate product (Snap) showed significantly less polymerization shrinkage strain (p<0.01) and significantly lower maximum temperature rise (p<0.01) than the other two poly(methyl methacrylate) products (Duralay, Vertex). 2. Mean maximum shrinkage rate for each resin was calculated to $-31.8{\mu}{\epsilon}/sec,\;-15.9{\mu}{\epsilon}/sec$ and $-31.8{\mu}{\epsilon}/sec$ for Duralay, Snap and Vertex, respectively. Snap showed significantly lower maximum shrinkage rate than Duralay and Vertex (p<0.01). 3. From the second experiment, some expansion was observed immediately after removal of specimen from the mold, and the amount of expansion increased as the removal time was delayed. For each removal time, Snap showed significantly less strain changes than the other two poly(methyl methacrylate) products (p<0.05). 4. During the external heat supply for the resins, higher maximum temperature rises were found. Meanwhile, the maximum shrinkage rates were not different from those of room temperature polymerizations. 5. From the third experiment, the external heat supply for the resins during polymerization could temporarily decrease or even reverse shrinkage strains of each material. But, shrinkage re-occurred in the linear nature after completion of heat supply. 6. Linear thermal expansion coefficients obtained from the end of heat supply continuing for an additional 5 minutes, showed that Snap exhibited significantly lower values than the other two poly(methyl methacrylate) products (p<0.01). Moreover, little difference was found between the mean linear thermal expansion coefficients obtained from two different heating durations (p>0.05).

  • PDF

Effects of mold temperature on the part dimension and surface quality of the injection molded cavity filter (금형온도가 Cavity Filter 성형품의 치수 및 외관품질에 미치는 영향에 관한 연구)

  • 김동학;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.164-167
    • /
    • 2003
  • In this study, we developed the mold for the plastic cavity filter which is a kind of a wireless communication device. Since the cavity filter is made of aluminium, the cost of fabrication is high and the production rate is low. But we can produce plastic cavity filter part by injection molding process with the mold which was designed by our team. The dimension and surface quality of plastic cavity filter was investigated by varying the molding method (conventional and MmSH process) and two different types of resin(PC/ABS and ABS). In case of ABS part, the shrinkage of the inner partition walls was decreased when we adopted MmSH method. The weight of both ABS and PC/ABS parts increased and the surface roughness decreased with MmSH process.

  • PDF

Optimization of injection molding to minimize sink marks for cylindrical geometry (원통형 플라스틱 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화)

  • Kwon, Yun-Suk;Je, Duck-Keun;Jeong, Young-Deug
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.33-37
    • /
    • 2008
  • This paper describes the optimization of injection molding conditions to minimize sink marks. Sink marks, which refer to a small depression on the surface opposite a thick wall thickness, are often encounted in injection molded plastic parts. Part geometry, material properties and processing conditions during injection molding can affect the sink mark depth. We designed the runner system which is possible balanced filling to cavities using CAE program and then obtained optimal processing conditions by Taguchi's Robust Design technique. By actual injection molding using optimized mold and molding conditions, it confirmed that sink mark depth decreased zero compared to 1mm level in the conventional mold and process.

  • PDF

Deformation of a mold for large area UV-nanoimprint lithography in alignment and curing processes (UV 나노임프린트리소그래피의 정렬 공정 중 몰드의 변형해석)

  • Park, In-Soo;Won, Chong-Jin;Yim, Hong-Jae;Jeong, Jay-I.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1939-1943
    • /
    • 2008
  • Deformation of a mold is measured and analyzed in alignment and curing processes of UV-Imprint Lithography. We are focused on mold deformation caused by a UV resin, which is laminated between a mold and a target glass-panel. The UV resin is viscous in case of liquid state, and the resin will be solidified when being exposed by the ultra-violet light. The viscosity of the resin causes shear force on the mold during the alignment process. Moreover, the shrinkage during phase change from liquid to solid may cause residual stress on the mold. The experiments for measuring temperature and strain are made during alignment and curing process. Strain-gages and thermocouples are used for measuring the strain and variation of temperature on several points of the mold, respectively. The deformation of mold is also simulated and analyzed. The simulation results are compared with the experiments. Finally, sources of alignment errors in large area UV-nanoimprint lithography are discussed.

  • PDF

Study of injection molded pattern transferability of double-sided micro-patterned automotive thick light guides (양면 마이크로 패턴 차량용 후육 라이트 가이드의 사출성형 패턴 전사성에 관한 연구)

  • Dong-won Lee;Sang-Yoon Kim;Ji-Woo Kim;Jong-Su Kim;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.42-51
    • /
    • 2023
  • In this study, we investigated the injection molding technology of thick-walled light guides, which are parts that control the light source of automotive lamps. Through injection molding analysis, the gate position that can minimize product shrinkage and deformation was selected, and a mold reflecting the analysis results was manufactured to evaluate the effect of injection speed and holding pressure on transferability during micro-pattern molding through experiments. When designing an injection mold for products with varying thicknesses, it was found that installing the gate on the side of the thicker part was advantageous for reducing volume shrinkage and deformation. It was found that the effect of shrinkage due to thickness may be greater than the position of the gate on pattern transferability. The pattern transfer error decreased as the injection speed and holding pressure increased, and it was found that increasing the injection speed was relatively effective.

Study on optimum conditions establishment by Mold fabrication of Vacuum Casting (진공주형몰드 제작에 대한 최적조건 설정에 관한 연구)

  • Jeon, Eon-Chan;Han, Min-Sik;Kim, Soo-Yong;Kim, Tae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.65-70
    • /
    • 2007
  • In this study, we analyzed about that after design form manufacture master pattern in Rapid Prototyping-RP through design program, processes to manufacture prototype using Vacuum Casting. In Rapid Prototyping-RP, there is an en-or by shrinkage of resin and, in Vacuum Casting, there is an error by shrinkage of silicon. To select condition which shrinkage become the minimum of each process, manufactured prototype after using Full Factorial Design of Design of Experiments, We could confirm shrinkage using reverse engineering and that result came into effect ANOVA 2-way. We applied errors of each process to master pattern, and then presented the method to improve flood control precision of prototype of Vacuum Casting.

  • PDF

Deformation Analysis of Injection Molded Articles due to In-mold Residual Stress and Subsequent Cooling after Ejection (사출 성형품의 금형내 잔류음력과 이형후 냉각에 의한 후변형 해석)

  • Yang, Sang-Sik;Gwon, Tae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.340-348
    • /
    • 2002
  • Deformation analysis of injection molded articles whose geometry is considered as the assembly of thin flat plates has been conducted. For the in-mold analysis, thermo-viscoelastic stress calculation of thermo-rheologically simple amorphous polymer and in-mold deformation calculation considering the in-plane mold constraint have been done. Free volume theory has been used to represent the non-equilibrium density state during the fast cooling. At ejection, instantaneous deformation takes place due to the redistribution of in-mold residual stress. During out-of-mold cooling after ejection, thermoelastic model based on the effective temperature has been adopted for the calculation of out-of-mold deformation. In this study, emphasis is also made on the treatment with regard to lateral constraint types during molding process. Two typical mold geometries are used to test the numerical simulation modeling developed in this study.

Fundamental Study on the Development of mold-prevention Mortar (방곰팡이 모르타르의 개발에 관한 기초적 연구)

  • Yoon, Gi-Won;Park, Yong-Kyu;Lee, Joo-Hun;Choi, Myung-Hwa;Lee, Sang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.813-816
    • /
    • 2008
  • This study is an experimental study on the properties and efficiency of mold-prevention mortar and the results are summarized as following. The flow, compressive stress, and the drying shrinkage ratio of mold-prevention mortar was similar with plain, so it was shown that the mold-prevention does not influence physical effect specially. However, the mold-prevention mortar which even mixed with few mold, the mold-prevention capacity greatly increased. Also, the mold-prevention capacity of 1:4 ratio mortar was better than 1:2 ratio mortar.

  • PDF

Effects of Processing and Designing Variables on Formation of Shrinkage Cavities in GC150 Gray Cast Iron (GC150 회주철의 수축결함생성에 미치는 주조 및 설계공정인자들의 영향)

  • Yu, Sung-Kon;Shin, Sang-Woo
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.580-586
    • /
    • 2002
  • The effect of processing and designing variables such as pouring temperature(1400 or $1500^{\circ}C$), inoculation and risering design(T and H type) on the formation of defects such as external depression, primary and secondary shrinkage cavities in GC150 gray cast iron was investigated. In T type risering design, external depression or primary shrinkage cavity due to liquid contraction was formed in all of the eight cases. Regardless of its modulus value, the riser could not function properly in T type risering design because directional solidification was not promoted toward the riser. On the other hand, the four cases of H type risering design in which thermal sleeves were set onto the risers produced defect-free castings. In both types of the risering designs, secondary shrinkage cavity caused by solidification contraction was not observed in the casting because of the expansion pressure due to graphite precipitation and the application of rigid pep-set mold. The degree of external depression or primary shrinkage cavity was reduced with lowered pouring temperature. The effect of inoculation was diminished because of the high carbon equivalent of GC 150 gray cast iron.

The Effect of cooling channel in prototype mold(TSR-755) (우레탄레진(TSR-755)을 이용한 시작형몰드의 냉각채널 배치에 따른 영향 해석)

  • Kim, Kwang-Hee;Kim, Jeong-Sik;Lee, Yun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.702-706
    • /
    • 2009
  • The urethane based on prototype mold is very useful for making prototype. Especially, the method of stereolithography mold was turned out to be rapid and accurate 3-dimensional modeling data. Urethane resin (TSR-755) has heat resistant and is good for make hundreds of prototypes. In this study, we compared with various designed cooling channel and analyzed of cooling effect and deformation using commercial code Simpoe-Mold for injection mold. As a result, efficiently arranged cooling channel could make 19% of shrinkage to reduce and 46% cooling time to reduce.