• 제목/요약/키워드: mold preheating temperature

검색결과 20건 처리시간 0.025초

Investigation of Interface Reaction between TiAl Alloys and Mold Materials

  • 김명균;김영직
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.289-289
    • /
    • 1999
  • This paper describes the investment casting of TiAl alloys. The effects of mold material and mold preheating temperature for the investment casting of TiAl on metal-mold interfacial reaction were investigated by means of optical micrography, hardness profiles and an electron probe microanalyzer. The mold materials examined were colloidal silica bonded ZrO₂, ZrSiO₄, A1₂O₃and CaO stabilized ZrO₂. When compared with conventional titanium a1loy, the high aluminum concentration of TiAl alloys helps to lower their reactivity in the molten state. The A1₂O₃mold is a promising mold material for the investment casting of TiAl in terms of the thermal stability, formability and cost. Special attention need to be paid to thermal stability and mold preheating when developing the investment calling of TiAl alloys.

TiAl 합금의 CaO 도가니 유도용융 및 정밀주조 (CaO Crucible Induction Melting and Investment Casting of TiAl Alloys)

  • 김명균;성시영;김영직
    • 한국주조공학회지
    • /
    • 제22권2호
    • /
    • pp.75-81
    • /
    • 2002
  • The main objectives were to investigate the suitability of CaO crucible for melting TiAl alloys and to develop investment mold for investment casting of TiAl alloys. TiAl alloy specimen were prepared by plasma arc furnace under argon atmosphere. After melting of TiAl alloy using CaO crucible, the results showed that there is little contamination of oxygen in the TiAl bulk. Conventional vacuum induction furnaces can be readily adaptable to produce cast parts of TiAl without high skilled techniques. The determination of optical metallography and microhardness profiles in investment cast TiAl alloy rods has allowed the gradation of the relative thermal stability of the oxides examined. The molds used for the present study were $ZrO_2$, $Al_2O_3$, CaO stabilized $ZrO_2$ and $ZrSiO_4$. Even although high temperature of mold preheating, $Al_2O_3$ mold is a promising mold material for investment casting of TiAl alloys in terms of thermal stability, cost and handling strength. It is important to take thermal stability and preheating temperature of mold into consideration for investment casting of TiAl alloys.

공정변수에 따른 초전도 튜브의 전기적 특성변화

  • 박치완;장건익;하동우;성태현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.73-76
    • /
    • 2004
  • High-temperature Superconductor(HTS) tubes were fabricated in term of different processing variables such as preheating temperature, speed of mold rotation and cooling rate by centrifugal forming method. For powder melting by induction the optimum range of melting temperatures and preheating temperature were $1050^{\circ}C{\sim}1100^{\circ}C$ and $550^{\circ}C$ for 30min, respectively. The mould roating speed was 1000rpm. A tube was annealed at $840^{\circ}C$ for 72hours in oxygen atmosphere. The plate-like grains were well developed along the roating direction and typical grain size was about more than $40{\mu}m$. It was found that Ic values increased with increasing the preheating temperature and speed of mold rotation. While Ic decreased with increasing the cooling rate. The measured Ic in $50mm{\times}70mm{\times}2.5mm$ tube was about 896Amp.

  • PDF

공정변수에 따른 초전도 튜브의 전기적 특성 (Electrical Characteristics of HIS Tube Depending on Processing Parameters)

  • 박치완;장건익;하동우;성태현
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.468-472
    • /
    • 2005
  • High-temperature Superconductor(HTS) tubes were fabricated in term of different processing variables such as preheating temperature, speed of mold rotation and cooling rate by centrigugal forming method. For powder melting by induction the optimum range of melting temperatures and preheating temperature were $1050{\circ}C{\sim}1100{\circ}C\;and\;550{\circ}C\;for\;30\; min$, respectively The mould roating speed was 1000 rpm. A tube was annealed at $840 {\circ}C$ for 72 hours in oxygen atmosphere. The plate-like grains were well developed along the loafing direction and typical grain size was about more than $40{\mu}$. It was found that Ic values increased with increasing the Preheating temperature and speed of mold rotation. While Ic decreased with increasing the cooling rate. The measured Ic in $50mm{\times}70mm{\times}2.5mm$ tube was about 896 Amp.

금형주조장치의 예열온도에 따른 타이어 몰드용 AC7A 주조재의 열변형에 관한 연구 (A Study on Thermal Deformations of AC7A Tire Mold Casting Material by Pre-Heating Temperatures of Permanent Casting System)

  • 최제세;최병희
    • 한국산학기술학회논문지
    • /
    • 제14권6호
    • /
    • pp.2596-2603
    • /
    • 2013
  • 타이어 몰드의 내구성과 정밀도는 타이어의 품질을 결정하는 매우 중요한 요인이다. 그러나 타이어 몰드를 제작하는데 있어서 밀폐된 주조장치 안에서 발생하는 주물의 열변형을 측정하는 데는 많은 어려움이 있다. 본 연구에서는 금형주조장치의 예열온도에 따른 타이어 몰드용 AC7A 주조재의 온도분포, 변위, 응력과 같은 열변형을 수치해석을 통해 분석하였고, 동일 조건하에서 AC7A 주조재의 온도분포를 실험을 통해 측정하여 수치해석 결과와 비교하였다. 수치해석을 위해 상용프로그램인 "COMSOL Multiphysics"를 사용하였고, 금형주조장치의 예열온도를 $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$, $300^{\circ}C$로 바꾸어 수치해석을 실행하였다. 수치해석 결과 금형주조장치의 예열온도가 $300^{\circ}C$였을 경우에 주조재의 평균변위와 평균응력은 각각 0.25mm와 0.351GPa로 가장 작게 나타났고, 평균온도는 $374.27^{\circ}C$로 온도가 가장 높게 나타나는 것을 확인할 수 있었다. 수치해석에 의한 온도분포 결과와 실험에 의한 온도분포 결과를 비교하였을 때, 냉각 초기에 상변화과정에서 발생하는 잠열로 인해 약간의 온도차이가 발생하였으나, 그 구간을 제외하고는 거의 비슷한 냉각패턴을 나타내는 것을 확인할 수 있었다.

금형 예열온도에 따른 Al-Cu-Si 3원계 공정합금의 미세조직 변화 (Changes on the Microstructure of an Al-Cu-Si Ternary Eutectic Alloy with Different Mold Preheating Temperatures)

  • 오승환;이영철
    • 한국주조공학회지
    • /
    • 제42권5호
    • /
    • pp.273-281
    • /
    • 2022
  • Al-Cu-Si 3원계 공정합금의 응고거동과 미세조직 변화를 이해하기 위해서, 금형 예열온도를 달리하여 Al-Cu-Si 3원계 공정합금의 미세조직 변화를 관찰하였다. 금형 예열온도가 500℃일 때, 초정 Si과 덴드라이트 형상의 Al2Cu상이 관찰되며, 이후 (α-Al+Al2Cu)의 2원계 공정상이 관찰된다. 금형 예열온도가 300℃일 때 미제조직은 금형 예열온도가 500℃일 때와 유사하나 (α-Al+Al2Cu+Si)의 3원계 공정상이 관찰되는 영역과 관찰되지 않는 영역이 나타난다. 금형 예열온도가 150℃인 경우에는 미세조직이 (α-Al+Al2Cu)의 2원계 공정상과 (α-Al+Al2Cu+Si)의 3원계 공정상이 관찰되는 Bimodal 구조를 나타낸다. 금형 예열온도를 달리 하였을 때 가장 큰 변화를 나타내는 상은 Si상이며, 임계냉각속도를 지나면 (α-Al+Al2Cu+Si)의 3원계 공정상이 형성되는 순간에 빠른 냉각에 의한 Si의 성장이 억제되면 Cooperative 성장을 하기 때문에 Al, Cu의 성장도 함께 억제된다. 서로 다른 합금설계 전산모사 프로그램을 통해 Al-27wt%Cu-5wt%Si의 3원계 공정 합금을 분석한 결과, 합금설계 전산모사 프로그램에 따라 결과의 차이가 발생하며, 전산모사의 신뢰성을 높이기 위해서는 실제 주조를 통한 미세조직 분석이 수반되어야 한다.

SM45C강의 온도변화에 따른 Nd:YAG 레이저 표면경화 특성 (Characteristics of Surface Hardening of Nd:YAG Laser According to Temperature Changes of SM45C)

  • 이가람;양윤석;황찬연;유영태
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.988-997
    • /
    • 2012
  • Laser surface hardening is one of core technologies to enhance various characteristics such as the strength, hardness, toughness, abrasion resistance, and fatigue resistance for the mold material. This paper focuses on testing characteristics of the laser heat treatment according to the preheating parameters in case of the SM45C medium carbon steel. In this paper, we assume that the power and travel speed of the laser are 1,800W and 0.5m/min, respectively, and the range of the preheating temperature is $50^{\circ}C{\sim}300^{\circ}C$. From the result of the test, we observed that the hardness width and depth are enhanced as the temperature is increased. Also, the best average hardness was 751.7Hv for the temperature of $100^{\circ}C$.

TiAl 합금의 주형계면반응 및 유동성 평가 (Evaluation of Metal-mold Reactions and Fluidity of TiAl Alloys)

  • 이상화;성시영;최봉재;김명균;김영직
    • 한국주조공학회지
    • /
    • 제26권2호
    • /
    • pp.98-103
    • /
    • 2006
  • Metal-mold reactions between investment mold and TiAl alloys were investigated for the economic net-shape forming of TiAl alloys. The effect of mold preheating temperatures on the metal-mold reaction were investigated using a vacuum induction-melting furnace. In the case of TiAl alloys, there were no ${\alpha}$-case formation reactions. There were neither interstitial nor substitutional ${\alpha}$-case formations as TiAl alloys have both negligible solubility of oxygen and low activity in molten states. The fluidity of TiAl alloys increases with mold preheating temperature since they have a peritectic reaction that appears in the form of envelope, surrounding each particles of the primary constituent. The results of the investment casting of TiAl alloys confirm that the casting route in our study can be an effective approach for the economic net-shape forming of TiAl alloys.

Al-7wt%Si-0.3wt%Mg 합금의 응고 및 미세조직에 미치는 Sr 첨가와 금형예열온도의 영향 (The Effect of Sr Addition and Mold Preheating Temperature on the Solidification and Microstructure of Al-7wt%Si-0.3wt%Mg Alloy)

  • 권일수;김경민;윤의박
    • 한국주조공학회지
    • /
    • 제17권6호
    • /
    • pp.608-614
    • /
    • 1997
  • The effect of mold preheating temperature on the microstructure such as grain size, eutectic silicon morphology was investigated for the Al-7wt%Si-0.3wt%Mg alloy. Microstructural variations have been characterized as a function of Sr addition and cooling rate during solidification. Microstructures were correlated with cooling rate, local solidification time and eutectic nucleation temperature, etc. In this study, Sr addition caused increase of local solidification time, undercooling and reduction of eutectic plateau temperature. In logarithmic scale, local solidification time was in inverse proportion to cooling rate. Eutectic nucleation temperature was in inverse proportion to cooling rate of logarithmic scale. Increasing the cooling rate refined dendrite arm spacing and eutectic silicon. Dendrite arm spacing was logarithmically in inverse proportion to cooling rate. Without modifier addition, eutectic silicon was modified at cooling rate of $7^{\circ}C/s$ or higher.

  • PDF

다단냉간단조 비가공 타입에서 볼하우징 인서트 다이의 금형설계 검증 (Mold-design Verification of Ball Housing Insert Die in Non Processing Type Multi-stage Cold Forging)

  • 황원석;최종원;정의은;강명창
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.8-15
    • /
    • 2021
  • Cold forging is a method in which molding is performed at room temperature. It has a high material recovery rate and dimensional precision and produces excellent surface quality, and it is mainly used for the production of bolted or housing products. The lifespan of cold forging molds is generally determined by the wear of the mold, plastic deformation of the mold, and fatigue strength. Cold forging molds are frequently damaged due to fatigue destruction rather than wear and plastic deformation in a high-temperature environment as it is molded at room temperature without preheating the raw material and mold. Based on the results analyzed through FEM, an effective mold structure design method was proposed by analyzing the changes in tensile and compressive stresses on molds according to the number of molds and reinforcement rings and comparing the product geometry and mold stress using three existing mold models.