• Title/Summary/Keyword: mold design

Search Result 1,177, Processing Time 0.03 seconds

A Study on Plastic Injection Molding for Warpage Characteristics Evaluation of Mobile Phone Cover (모바일폰 커버의 휨특성 평가를 위한 사출 성형에 관한 연구)

  • Kim O. R.;Kim M. Y.;Lee S. H.;Kwon C. O.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.76-81
    • /
    • 2006
  • In this study, warpage characteristics of mobile phone cover through injection molding process were investigated using design of experiments in injection molding process. Warpage in plastic injection molding has a significant effect on quality of product. Effects of injection time, packing pressure, packing time, mold temperature and melt temperature on the warpage of mobile phone cover were considered by numerical analysis and experiment with Taguchi method. The degree of warpage for the injection molded part was measured by using three dimensional coordinate measurement machine. It was shown that temperature control factor has more significant effect on the warpage of mobile phone cover than pressure control factor.

Process Simulation of Investment Casting for Large Gas Turbine Component (대형 가스터빈 부품의 정밀주조 응고해석)

  • Seo, Seong-Mun;Jo, Chang-Yong;Lee, Jae-Hyeon;Choe, Seung-Ju
    • 연구논문집
    • /
    • s.29
    • /
    • pp.173-183
    • /
    • 1999
  • The vacuum investment casting process for a large gas turbine component, Inner Preswirl Support (IPS), was simulated by using commercial FEM package ProCAST(TM) with view factor radiation method. The solid fraction in mushy zone was directly measured by Differential thermal analysis(DTA-DSC mode). Three types gating design. considering liquid flow and heat release through it. were proposed. Solidification had begun at the ribs or thin sections of the IPS casting and advanced further through the upper and lower gates. The computed temperature gradient G and G/R values at 70% solidified temperature were used for prediction of microshrinkage formation during casting. The effect of mold preheat on the thermal history of the casting displayed minute effect on the microshrinkage formation.

  • PDF

A Durability Investigation on Automotive Front Bumper Guard (자동차의 프런트 범퍼 가드에 관한 내구성 연구)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.1-7
    • /
    • 2020
  • In this study, three models on the installation of automotive additional front bumper guard were designed and the structural analysis was carried out. The additional front bumper models B and C appears to be safer on stability instead of the basic front bumper model A. Model A with a simple structure is shown to have the safe region overall except in the area where the load is applied directly. Models B and C are shown to have the shortest lives at the regions where the bumpers are connected with each other. By comparing with the least fatigue lives at models A, B and C, Model B has the longest life with the best durability.

A Study on the Static and Dynamic Stiffness Evaluation of a High Speed Mold/Die Machining Center Structure (고속 금형가공센터 구조물의 강성평가에 관한 연구)

  • 최영휴;강영진;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.102-106
    • /
    • 2003
  • An experimental modal analysis and dynamic stiffness evaluation of a moving body structure of a high speed machining center are presented in this paper. The natural frequencies and corresponding modes, and dynamic compliance of a moving body structure of high speed machining center are investigated by using F.E.M., hydraulic exciter test, and impulse hammer test. The lowest three natural frequencies were found to be 56.6 Hz, 112.7 Hz, and 142.7 Hz by FEA respectively, while those were 55 Hz, 112 Hz, 131 Hz by experimental analysis. Furthermore, both computed and measured absolute dynamic compliances of the moving body structure in iso-direction showed good agreement especially at the first two mode frequencies. With our experimental data, the dynamic characteristics of the machining center can be exploited to get a new development of structural dynamic design and modification.

  • PDF

Control of Processing Conditions for Improvement of vibration Characteristics of Injection Molded Disk (사출성형 디스크의 진동특성 향상을 위한 공정조건 제어)

  • Sin Hyo-Chol;Nam Ji-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.615-621
    • /
    • 2006
  • Increased application of optical disks requires more improved dynamic stability of rotating disks. In this study, a new concept of controlling the processing conditions of injection molded disks was developed to improve vibration characteristics. The critical speed, which shows stiffness and dynamic stability of disk, is affected by the residual stress distribution; this varies as functions of distance from the gate and processing condition. The critical speed of disk was calculated with the initial stress taken into consideration, which was determined from injection molding simulation. Choosing melt temperature, mold temperature, filling speed and packing pressure as design parameters, critical speed is maximized with the method of response surface. It is shown that the stability of injection molded disk has been improved for the new condition obtained as a result of the study proposed.

Effect of the $CO_2$ on Viscosity Change in Continuous Microcellular Foaming Processing (초미세 발포 연속공정을 위한 $CO_2$ 사용이 재료의 점도변화에 미치는 영향)

  • 문용락;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1394-1397
    • /
    • 2003
  • The first thing in developing injection molding and extrusion with microcellular foaming process is to get a grip on one phase state's rheology of gas and polymer solution. Understanding rheology is essential to design mold or die. and it is so important to control the condition of process. Also, this data is got the utmost out of simulation carrying out. In this paper, we will see the measurement of rheology in one phase that mixed polypropylene which contains talc with carbon dioxide of super critical fluid state, and will compare its result with the simulation result.

  • PDF

Air Flow Analysis on Driving Truck with or without Side Pairing (사이드 페어링 장착 유무에 따른 구동 트럭에서의 공기 유동 해석)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.14-20
    • /
    • 2020
  • In this study, the overall states of the airflow when a truck with or without side pairing is driven at a maximum speed of 90 km/h, regulated by domestic law, were investigated through computational fluid dynamics numerical analysis. All the tested models showed that the airflow went under the truck body; specifically, the air did not flow along the underside to the rear of the truck but through the sides of its underside. The drag with the drag coefficient at model 3 was clearly higher than those for the other two models. The results of this study could help to improve the truck performance by reducing its resistance against the air flown from it in driving itself.

Bead Optimization to Reduce Springback of Sheet Metal Forming using High Strength Steel (HSS강판 판재성형 시 스프링백 최소화를 위한 드로우 비드 최적 설계)

  • Hong, Seokmoo;Hwang, Jihoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.350-354
    • /
    • 2014
  • Recently, high strength steel (HSS) sheet metal has been widely used to improve lightweight structures in the automotive industry. Because HSS sheets have high strength but low elongation, it is difficult both to make products with complex shapes and to control excessive springback. In order to reduce the springback after forming using HSS, draw beads were introduced in this study. The design variables, including the draw-bead positions and shapes, were optimized using a finite element analysis. A mold for a scanner support, which is part of an A3 printer, was designed using the proposed method and then utilized. The results from a finite element simulation and optimization were compared with the experiment results.

Improvement of Fracture Toughness in 7XXX Series Aluminum Alloy Forings (7XXX계 알루미늄합금 단조재의 파괴인성 개선)

  • Song, K.H.;Lee, O.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.200-206
    • /
    • 1998
  • The aim of this study is to investigate the effect of impurity level and fabrication processes on the strength, impact and fracture toughness of 7075, 7050 and 7175 aluminum alloy forgings. A specially processed 7175S-T74 aluminum forgings was superior to a conventionally processed 7075-T73, 7050-T74 and 7175-T74 aluminum forgings in both strength and toughness. The reduction of impurity level of iron and silicon has significantly diminished the size and volume fraction of second phase particles such as $Al_7Cu_2Fe$ and $Mg_2Si$. A further reduction of the amount of second phase particles has been observed by applying a special fabrication process. This phenomena result from the application of intermediate soaking at higher temperature and more sufficiant hot working temperature than that of a conventional processing.

  • PDF

An analysis of Injection Molding Process for the Manufacturing of DC Motor Case (DC 모터 케이스 제조를 위한 사출성형공정 분석)

  • 민병현;김병곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.812-815
    • /
    • 2000
  • Injection molding process was taken to manufacture DC motor case that surrounds DC motor used as automobile parts. Up to now, DC motor case has been made by the deep drawing process or bending process of metal materials. Simulations of filling, packing and cooling processes were done by CAE tool like Moldflow software. Optimal delivery system was decided from the analysis of flow balance, and packing and cooling analyses were performed by using the design of experiment to minimize the volumetric shrinkage of molded part and the temperature difference between mold and part.

  • PDF