• Title/Summary/Keyword: mold design

Search Result 1,177, Processing Time 0.029 seconds

A study on surface roughness depending on cutting direction and cutting fluid type during micro-milling on STAVAX steel (STAVAX 강의 마이크로 밀링 중 가공 방향 및 절삭유체 분사형태에 따른 표면 거칠기 경향에 관한 연구)

  • Dong-Won Lee;Hyeon-Hwa Lee;Jin Soo Kim;Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.22-26
    • /
    • 2023
  • As Light-Emitting Diodes(LEDs) continue to advance in performance, their application in automotive lamps is increasing. Automotive LEDs utilize light guides not only for aesthetics but also to control light quantity and direction. Light guides employ patterns of a few hundred micrometers(㎛) to regulate the light, and the surface roughness(Ra) of these patterns can reach tens of nanometers(nm). Given that these light guides are produced through injection molding, mold processing technology with high surface quality micro-patterns is required. This study serves as a preliminary investigation into the development of high surface quality micro-pattern processing technology. It examines the surface roughness of the workpiece based on the cutting direction of the pattern and the cutting fluid type when cutting micro-patterns on STAVAX steel using cubic Boron Nitride(cBN) tools. The experiments involved machining a step-shaped micro-pattern with a height of 60 ㎛ and a pitch of 400 ㎛ in a 22×22 mm area under identical cutting conditions, with only the cutting direction and cutting fluid type being varied. The machining results of four cases were compared, encompassing two cases of cutting direction(parallel to the pattern, orthogonal to the pattern) and two cases of cutting fluid type (flood, mist). Consequently, the Ra value was found to be the highest(Ra 128.33 nm) when machining with the flood type in parallel to the pattern, while it was the lowest(Ra 95.22 nm) when machining with the mist type orthogonal to the pattern. These findings confirm that there is a difference of up to 25.8 % in the Ra value depending on the cutting direction and cutting fluid type.

Refractive-index Prediction for High-refractive-index Optical Glasses Based on the B2O3-La2O3-Ta2O5-SiO2 System Using Machine Learning

  • Seok Jin Hong;Jung Hee Lee;Devarajulu Gelija;Woon Jin Chung
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.230-238
    • /
    • 2024
  • The refractive index is a key material-design parameter, especially for high-refractive-index glasses, which are used for precision optics and devices. Increased demand for high-precision optical lenses produced by the glass-mold-press (GMP) process has spurred extensive studies of proper glass materials. B2O3, SiO2, and multiple heavy-metal oxides such as Ta2O5, Nb2O5, La2O3, and Gd2O3 mostly compose the high-refractive-index glasses for GMP. However, due to many oxides including up to 10 components, it is hard to predict the refractivity solely from the composition of the glass. In this study, the refractive index of optical glasses based on the B2O3-La2O3-Ta2O5-SiO2 system is predicted using machine learning (ML) and compared to experimental data. A dataset comprising up to 271 glasses with 10 components is collected and used for training. Various ML algorithms (linear-regression, Bayesian-ridge-regression, nearest-neighbor, and random-forest models) are employed to train the data. Along with composition, the polarizability and density of the glasses are also considered independent parameters to predict the refractive index. After obtaining the best-fitting model by R2 value, the trained model is examined alongside the experimentally obtained refractive indices of B2O3-La2O3-Ta2O5-SiO2 quaternary glasses.

Development of Web-Based Platform System for Sharing Manufacturing Technologies on Housing Parts of Mobile Products (휴대폰 외장부품 제조기술 공유를 위한 웹기반 플랫폼 개발)

  • Jung, Tae Sung;Yoon, Gil Sang;Heo, Young Moo;Lee, Hyo Soo;Kang, Moon Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.113-119
    • /
    • 2013
  • Despite rapid changes in the structure of industry, manufacturing remains a key industry for economic progress, promotion of trade, increased employment, and the creation of new industries. Production technologies are essential for strengthening the competitiveness of small- and medium-sized manufacturing industries. However, it is very difficult to standardize and systematically propagate production technology from an experienced worker to an inexperienced worker because these technologies are generally improved by the skilled people in a workshop. In this study, we introduce a Web-based platform system consisting of a knowledge authoring tool, technology database, semantic database, and Web portal service for sharing production technologies for the exterior housing parts of mobile products. By investigating various cellular phone designs, reference form factors for three types of mobile phone housings were designed based on the standard features. In addition, several manufacturing technologies and considerable information such as reference mold designs and molding conditions optimized using CAE and recent R&D outputs are stored in this system.

The Use of Finite Element Method to Predict the Hot Shear-Welding Process of Two Aluminum Plates

  • Shang, Li-Dong;Lee, Kyeng-Kook;Jin, In-Tai
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.426-430
    • /
    • 2008
  • Hot shear-welding is a process of bonding two plates together by using shearing stress in a controlled manner. This study dealt with the hot shear-welding process of two aluminum plates. These two plates were piles up in the shear-welding mold. Due to the shearing stress, these two plates were cut off longitudinally, and meantime they were welded together. During this process the control of the surplus material flow is very important, and it can be realized by designing the overlapping length and the shape of the cavity. The commercial software Deform-3D was employed to predict the effect of these two factors. The overlapping length and the shape of the cavity that presents the optimum design was then developed to get a good shear-welding process.

  • PDF

Effects of Insulation Layer upon the Thermal Behavior of Linear Motors

  • Eun, In-Ung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.896-905
    • /
    • 2003
  • A linear motor has many advantages next to conventional feed mechanisms: high transitional speed and acceleration, high control performance, and good positioning accuracy at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has a long lifetime, and is easy to assemble. A disadvantage of the linear motor is low efficiency and resultant high-temperature rise in itself and neighboring structures during operation. This paper presents the thermal behavior of the linear motor as a feed mechanism in machine tools. To improve the thermal behavior, an insulation layer is used. By placing the insulation layer between the primary part and the machine table, both the temperature difference and the temperature fluctuation in the machine table due to a varying motor load are reduced.

The Temperature Distribution Analysis and Temperature Rise Test of Pole Mold Transformer (초고압 현수애자의 Pin 형상에 따른 응력해석)

  • Cho, Han-Goo;Park, Ki-Hoo;Han, Se-Won;Yun, Mun-Su
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.155-157
    • /
    • 2001
  • Various types suspension insulators made of toughness glass or porcelain are used in the power transmission. And, Insulators are continually subject to mechanical and electrical stresses which depend on the characteristics of the line. The main factor that influence the increase in reliability of insulators. In operation is the capacity of the design to withstand the certain load over a long time, the mechanical strength of the insulators. This paper describes the results of a study on the stress analysis of suspension insulator based on the finite element analysis using NASTRAN. And, the mechanical strength was evaluated through such as kinds of pin type.

  • PDF

A Study on the Efficient Flow Analysis due to Valve Shape (밸브 형상에 따른 효율적인 유동해석에 관한 연구)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.17-22
    • /
    • 2020
  • This study investigates the flow efficiency based on valve shape. Three models are designed for the throttle, ball, and butterfly valves. Results show that Flow Model B, representing the ball valve, demonstrates the fastest flow rate among the three models. Although pressure contours are present on the side surfaces of the valve wings for all models, Flow Model C, representing the butterfly valve, demonstrates to be under the least amount of applied pressure among the three models. The results of this study can be utilized to efficiently control the air flow through various types of valves.

Development of Direct Surface Forming Process

  • Cho, Kwang-Hwan;Yoon, Kyung-Hwan
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.73-77
    • /
    • 2003
  • The backlight unit(BLU) is used as a light source of TFT liquid-crystalline-display (TFT-LCD) module. In this backlight unit, one of important components is the light guide, which is usually made of transparent polymers. Currently the screen-printing method is mainly used for the light guide as a manufacturing process. However, it has limitation to the flexibility of three-dimensional optical design. In the present paper a new alternative manufacturing method for the light guide with low-cost is proposed. This manufacturing method is named as direct surface forming (DSF), which is very similar to the well-known hot embossing except for partial contact between mold and substrate. The results of this new manufacturing method are presented in terms of processing condition, dimensional accuracy, productivity, etc.

  • PDF

Fabrication and feasibility estimation of Micro Engine Component (미세 엔진 운용성 검증 및 요소 기술 개발)

  • Lee, Dae-Hoon;Park, Dae-Eun;Choi, Kwon-Hyoung;Yoon, Joon-Bo;Kwon, Se-Jin;Yoon, Eui-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.31-36
    • /
    • 2001
  • As a part of micro engine development feasibility estimation was done through fabrication and test of down scaled combustor and MEMS fabricated spark electrode. In an experimental observation of the down scaled combustion phenomena where flame propagation was observed by optical method and pressure change in combustor which gives the information about the reaction generated thermal energy was recorded and analyzed. Optimal combustor scale was derived to be about 2mm considering increased heat loss effect and thermal energy generation capability. Through the fabrication and discharge test of MEMS electrode effects of electrode width and gap was investigated. Electrode was fabricated by thick PR mold and electroplating. From the result discharge voltage characteristic in sub millimeter scale electrode having thickness of $40{\mu}m$ was obtained. From the result base technology for design and fabrication of micro engine was obtained.

  • PDF

Optimizing the Injection Molding Process for Cooling Filter Using Computer Simulation and Taguchi Methods (컴퓨터 시뮬레이션과 다구치 방법을 이용한 냉각 필터 사출성형 공정의 최적화)

  • Lee, Seung-Hoon;Min, Byeong-Hyeon;Kim, Byeong-Gon
    • IE interfaces
    • /
    • v.15 no.3
    • /
    • pp.263-269
    • /
    • 2002
  • The injection molding process is a one of the most efficient techniques for manufacturing plastic parts of complex shape at low cost. In injection molding, molten plastic material is injected into the mold and cooled. Selection of molding conditions greatly affects the quality of molded parts. In this case study, we attempted to optimize the injection molding condition for a cooling filter using Taguchi experimental design methodology. The injection molding experiments were carried out using the Moldflow simulation software.