• Title/Summary/Keyword: mold design

Search Result 1,191, Processing Time 0.025 seconds

An Experimental and Simulation Analysis of Condensation in the Walk-in Closet Attached to Apartment Bathroom (욕실과 인접한 아파트 드레스룸의 결로 원인 분석)

  • Choi, Young-Woo;Kim, Sean Hay
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.89-94
    • /
    • 2017
  • Purpose: Condensation in walk-in closets attached to apartment bathroom has been known as an emerging issue that may threat occupants' comfort and health. Despite a number of design guidelines and enforcements to prevent condensation, condensation issues may still occur depending on various cases and scenarios. We aim to identify what condensation scenarios may lead to walk-in closet condensation and/or worse the existing condensation issues. Method: First we choose an actual walk-in closet of an apartment that suffers from sporadic condensation and resulting mold and mildew. Then we observe its relative humidity and temperature after the bathroom is used, in which excessive vapor is thought to be transported to the walk-in closet. We analyze Temperature Difference Ratio - a domestic indicator of condensation occurrence, and dew point temperature to compare it with surface temperature using 2D heat transfer simulation upon various condensation scenarios. Result: TDR of the test walk-in closet turns out be OK despite mold and mildew actually occurring. Hot water pipe installed in the floor would greatly reduce condensation. If hot water pipe in the upper floor, however, is not used, or hot water pipe of the closet is turned off during swing seasons, it is expected that condensations may still occur.

Numerical analysis on foam reaction injection molding of polyurethane, part B: Parametric study and real application

  • Han, HyukSu;Nam, Hyun Nam;Eun, Youngkee;Lee, Su Yeon;Nam, Jeongho;Ryu, Jeong Ho;Lee, Sung Yoon;Kim, Jungin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.6
    • /
    • pp.258-262
    • /
    • 2016
  • Foam reaction injection molding (FRIM) is a widely used process for manufacturing polyurethane foam with complex shapes. The modified theoretical model for polyurethane foam forming reaction during FRIM process was established in our previous work. In this study, using the modified model, parametric study for FRIM process was performed in order to optimize experimental conditions of FRIM process such as initial temperature of mold, thickness of mold, and injection amount of polymerizing mixture. In addition, we applied the modified model to real application of refrigerator cabinet to determine optimal manufacturing conditions for polyurethane FRIM process.

Three Dimensional Solidification Analysis in Automotive Cast Piston (자동차용 피스톤 주물의 3차원 응고해석)

  • Kim, Ji-Joon;Kim, Jin-Soo;Ryu, Gwan-Ho;Choi, Jeong-Kil;Lee, Zin-Hyoung;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.268-275
    • /
    • 1993
  • In gravity die casting, die cooling systems are frequently employed with water cooling to remove the heat of the solidifying metal. Thermal modeling is an important technique in mold design for improving the productivity of the process. Computer simulation system which consists of pre-processor, main solidification simulator and post-processor has been developed for three dimensional solidification analysis of cyclic gravity die casting. The pre-processor is used for mesh generation in a PC system. The modified finite difference method is adopted for the main solidification simulation algorithm during all the casting cycles. The post-processor graphically presents the simulation results. Several experiments in automotive cast piston were carried out. The temperature variations in casting and mold with time are measured experimentally, and the results are compared with calculation results. The effects of cycle number on solidification pattern are also studied. Several experimental results for the prediction of shrinkage defects are compared with calculated results.

  • PDF

Analysis of machining characteristics of thermogravimetric analysis and high-power density electron beam through the development of vaporized amplification sheets according to metal powder (Metal Powder에 따른 증기화 증폭 시트의 개발을 통한 열 중량 분석 및 고출력 전자빔의 가공 특성 분석)

  • Kim, Hyun-Jeong;Jung, Sung-Taek;Lee, Joo-Hyung;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.56-62
    • /
    • 2020
  • An electron beam was used to mainly utilize for polishing, finishing, welding, a lithography process, etc. Due to the high technical level of difficulty of high-power density electron beam, it is difficult to secure related technologies. In this study, research was carried out to improve the machinability by developing the vaporized amplification sheets to realize the electron beam drilling technology. Their vaporized amplification sheets were analyzed by using the measurement of chemical and composition, which is such as TGA, SEM. We analyzed micro-hole processing using a microscope. Also, the thermal characteristics of vaporized amplification sheets are highly significant for applying to high-power density electron beam technique. So, we finished the vaporized amplification sheets according to the process conditions and analyzed it according to the machining conditions of the electron beam. It was confirmed that the effect on the experimental results differs depending on the influence of the metal powder contained in the developed material.

Dimensional Optimization of Electric Component in Ultra Thin-wall Injection Molding by Using Moldflow Simulation (초박육 사출성형에서 Moldflow 시뮬레이션을 활용한 전자부품의 형상 최적화)

  • Lee, Jung-Hee;Bae, Hyun-Sun;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.1-6
    • /
    • 2020
  • Micro-structure components applied to various disciplines are steadily demanded with lighter weight and better quality. This is because that ultra thin-wall injection molding has been paid attention with a lot of benefits such as cost reduction, shorter process period, and so forth. However, this technology is complicate and difficult to obtain high quality of products compared with conventional injection molding due to warpage caused by uneven shrinkage and molecular orientation. Since warpage of products directly affects product quality and overall performance of devices, it is essential to predict deformation behavior to achieve high precision of molded products. Therefore, this study aims to find out adequate thin-wall mold design for FPC connector housing by employing Moldflow simulation before application. In addition, experimental research is performed by using a fabricated mold structure based on simulated results to prove accuracy and reliability of the suggested simulation for warpage analysis.

Fatigue Assessment Using SPR and Adhesive on Dissimilar Materials (SPR 과 접착제를 이용한 이종재료 접합의 피로평가)

  • Kim, Tae-Hyun;Suh, Jeong;Kang, Hee-Shin;Lee, Young-Shin;Park, Chun-Dal
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1204-1209
    • /
    • 2011
  • In this study, fatigue life is evaluated by comparing with lighter car body through the experiment on SPR joints. An experimental activity on sheet metal samples of Aluminum 5J32 and Steel SPRC440 has been conducted to achieve better understanding of the process. In addition, SPR joint used less than the existing Spot Welding improves joint strength and fatigue life is evaluated by using SPR and adhesive joining Hybrid. Joining(bonding) strength and fatigue life on SPR and Hybrid (SPR + adhesive) are evaluated throughout the experiment. With joining strength than 20 % of the aluminum material, dissimilar materials has improved over 2 times as large as the strength In case of dissimilar materials, the fatigue life of aluminum is increased by 1.6 to 2.5 times as large as the life.

Machinability Evaluation with Cutting Direction in High Speed Machining of Free Form Surface through Ball End Milling (볼 엔드밀을 통한 자유곡면의 고속가공에서 절삭방향에 따른 가공성 평가)

  • Kim, Gyeong-Gyun;Gang, Myeong-Chang;Lee, Deuk-U;Kim, Jeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.84-89
    • /
    • 2001
  • In recent years, there is increasing demand of esthetic design and complex function in aerospace, automobile and die/mold industry, which brings into limelight high-precision, high-efficient machining of sculptured surface. This paper deals with the establishment of the optimal tool path on free form surface in high speed ball end milling. Ball end milling is widely used for free form surface die and mold. In this machining, the cutting direction was changed with tool path. The cutting characteristics, such as cutting force and surface form are varied according to the variation of cutting directions. In this paper, the optimal tool path with down cutting in free form surface cutting is suggested.

  • PDF

A Study on Blasting for Paint Exfoliation on Plastic Coated Faces Using the Environment-Friendly Abrasive Materials of Starch Series (친환경 전분계 연마재를 이용한 플라스틱 도장면의 페인트 박리를 위한 블라스팅 가공에 관한 연구)

  • Li, Li-Hai;Kim, Yeon-Sul;Lee, Hi-Koan;Yang, Gyun-Eui;Mun, Sang-Don
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.79-86
    • /
    • 2010
  • The environment-friendly abrasive materials of starch series has a wide range of application value such as deburring of plastic injection products, paint exfoliation and surface treatment of painted products and polishing, etc. In this study, an experiment of paint exfoliation was performed by using the environment-friendly abrasive materials made of cheap starch, and its performance was reviewed. By adjusting the grit size of abrasive materials, nozzle pressure, nozzle feed and number of nozzle repetition, paint could be exfoliated effectively. In this experiment, it was found that the most suitable condition was grit size 0.75~1.0 mm, nozzle pressure 0.4 MPa, nozzle feed 5 mm/min and number of processing repetition 2 times.

A Study on the impact on the quality of hemming the number of hemming process (헤밍 공정의 횟수가 헤밍 품질에 미치는 영향에 관한 연구)

  • Shin, Na-Eun;Choi, Moon-Ho;Choi, Young-Deok;Choi, Hae-Un;Jang, Rae-Seong;Choi, Kye-Kwang;Kim, Sei-Hwan;Yun, Jae-Woong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • In this study, it was investigated by comparing the experimental hemming by the 3 steps and 2 steps in order to stabilize the quality of the hemming process. In the experimental results, the three-step hemming superior to the two-step one and the dimensional stability of part that was made by the three-step on was high. When the second stage Hemming has been found that the deflection caused by the force to the wear of the punch becomes larger plane can be folded by the hemming crimping and crimp uncertain.

Design and Fabrication of Durable Micro Heater for Intelligent Mold System (금형온도 능동제어 시스템 적용을 위한 고 내구성 마이크로 히터의 설계 및 제작)

  • Noh Cheolyong;Kim Youngmin;Choi Yong;Kang Shinill
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.26-30
    • /
    • 2005
  • Stamper surface temperature is very critical in replicating the high density optical disc substrates using injection molding as the pit or land/groove patterns on the optical disc substrate have decreased due to the rapid increase of areal density. During the filling stage, the polymer melt in the vicinity of the stamper surfaces rapidly solidifies and the solidified layer generated during polymer filling greatly deteriorates transcribability and fluidity of polymer melt. To improve transcribability and fluidity of polymer melt, stamper surface temperature should be controlled such that the growth of the solidified layer is delayed during the filling stage. In this study, the effect of heating on replication process was simulated numerically. Then, an injection mold equipped with instant active heating system was designed and constructed to raise the stamper surface temperature over the glass transition temperature during filling stage of the injection molding. Also, the closed loop controller using the Kalman filter and the linear quadratic Gaussian regulator was designed. As a result, the stamper surface temperature was controlled according to the desired reference stamper surface temperature.

  • PDF