• Title/Summary/Keyword: mold design

Search Result 1,191, Processing Time 0.027 seconds

OPTIMAL PREFORM DESGIN BY TRACING THE MATERIAL FLOW : APPLICATION TO PISTON FORGING

  • Hong J.T.;Lee S.R.;Park C.H.;Yang D.Y.;Chung W.J.;Park Y.B.;Kim Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.143-146
    • /
    • 2003
  • In this paper, a new preform design method is proposed to eliminate the excessive flash in metal forging process. After carrying out finite element simulation of the process with an initial billet, backward particle tracing is performed from the outlet of the flash. Then, the region which belongs to the flash is easily found .. The process is analyzed again with the redesigned billet which is removed that region the above mentioned region. The optimal preform shape which minimizes the amount of flash without changing the forgibility can be obtained in several iterations.

  • PDF

Automatic Mold Design Methodology to Optimize Warpage and Weld Line in Injection Molded Parts (사출 성형품의 휨과 웰드라인을 최적화하기 위한 자동 금형설계 방법)

  • ;Byung H. Kim
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.512-525
    • /
    • 2000
  • Designers are frequently faced with multiple quality issues in injection molded parts. These issues are usually In conflict with each other, and thus tradeoff needs to be made to reach a final compromised solutions. The objective of this study is to develop an automated injection molding design methodology, whereby part defects such as warpage and weld line are optimized. The features of the proposed methodology are as follows: first, Utility Function approach is applied to transform the original multiple objective problem into single objective problem. Second is an implementation of a direct search-based Injection molding optimization procedure with automated consideration of process variation. The Space Reduction Method based on Taguchi's DOE(Design Of Experiment) is used as a general optimization tool in this study. The computational experimental verification of the methodology was partially carried out for a can model of Cavallero Plastics Incorporation, U. S. A. Applied to production, this study will be of immense value to companies in reducing the product development time and enhancing the product quality.

  • PDF

An Elastic Deformation Model of High-speed Spindle Units

  • Zverev Igor Aexeevich;Eun In-Ung;Hwang Young-Kug;Chung Won-Jee;Lee Choon-Man
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.39-46
    • /
    • 2006
  • This paper presents an elastic deformation model of a spindle unit (S/U), which takes into account the non-linear properties of high-speed ball bearings (particularly the effect of high rotational speed). For this, a software for the estimation of the S/U elastic deformation properties was developed and intended for use by S/U designers. A computer aided analysis of the model using the developed software was carried out and experiments showed the significant effect of rotational speed, cutting load and bearing axial preload, and showed some new phenomena, from which the criteria for the choice of bearing axial preload is given.

Geometric Modeling and Five-axis Machining of Tire Master Models

  • Lee, Cheol-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.75-78
    • /
    • 2008
  • Tire molds are manufactured by aluminum casting, direct five-axis machining, and electric discharging machining. Master models made of chemical wood are necessary if aluminum casting is used. They are designed with a three-dimensional computer-aided design system and milled by a five-axis machine. In this paper, a method for generating and machining a tire surface model is proposed and demonstrated. The groove surfaces, which are the main feature of the tire model, are created using a parametric design concept. An automatically programmed tool-like descriptive language is presented to implement the parametric design. Various groove geometries can be created by changing variables. For convenience, groove surfaces and raw cutter location (CL) data are generated in two-dimensional drawing space. The CL data are mapped to the tread surface to obtain five-axis CL data to machine the master model. The proposed method was tested by actual milling using the five-axis control machine. The results demonstrate that the method is useful for manufacturing a tire mold.

Optical Design of Epoxy Mold Type PT using Finite Element Method (유한요소법을 이용한 에폭시 MOLD형 계기용 변압기의 최적 설계)

  • 박준범;이수길;정일형;박건호;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.175-178
    • /
    • 1994
  • In this study, the design program for optimal wire batch around service line is made to improve the dielectric strength at the primary winding using Finite Element Method. The automatic convergence algorithm for finding of limit object value using loop circulation method is developed to make the optimal design simulator The modulation method is suggested to make division time faster which is very important for full program efficiency. As a result, the program execution time is reduced about 32% and the optimal wire batch design is obtained.

Design Simulation of Epoxy Mold Type PT using Finite Element Method (유한 요소법을 이용한 에폭시 몰드형 PT의 설계 시뮬레이션)

  • Park, Geon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.119-122
    • /
    • 2005
  • In this study, the design simulation for optimal wire batch around service line was made to improve the dielectric strength at the primary winding using Finite Element Method. The automatic convergence algorithm for finding of limit object value using loop circulation method was developed to make the optimal design simulator. The modulation method was suggested to make division time faster which was very important for full simulation efficiency. As a result, the simulation time was reduced and the optimal wire batch design was obtained.

  • PDF

Determination of Gate Position Considering Robustness in Injection Mold Design (사출금형 설계에서 강건성을 고려한 게이트 위치의 결정)

  • Park, Jong-Cheon;Kim, Kyung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.113-118
    • /
    • 2017
  • In this paper, we propose a design procedure for determining the gate position robust to changes and inherent fluctuations in the process conditions during injection molding. To evaluate the robustness of the gate position, the signal-to-noise ratio is used, and noise conditions are implemented using orthogonal arrays, where the process variables are considered as noise factors and possible process fluctuations are set as the levels of the noise factors. To show the usefulness of the proposed robust design procedure, we apply it to a computer CPU baseplate. As a result, it is shown that a robust gate position can be determined that reduces the average warpage deflection by 2.4% and 1.7%, and the variance by 3.4% and 5.1%, compared to the two initial gate positions.

A study on the visual sensibility of brassiere design(Part I) (브래지어 디자인에 대한 시각적 감성연구(제 1보))

  • 하수진;이경희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.5
    • /
    • pp.635-644
    • /
    • 1999
  • The purpose of this study is to investigate the visual sensibilities of brassiere design. Brassieres were divided into three types according to connection of a cup and a strap. In each type Lace was used where the part of the cup divided by lines which were constructed such as a mold horizontal a vertical a mixed and an oblique design. As a result 39 brassieres were obtained. The experiment has been done for the 39 brassieres with 17 semantic differential bi-polar scales. The subjects were 60 female students majoring in clothing and textiles, The data was analyzed using the statistical SPSS package. The major findings of this research were as follows. 1. As a results of the factor analysis, 3 factors(Attractiveness Appearance. Cuteness) were found to be constructing factors for brassiere image. 2. There were significant differences in the visual evaluation of brassiere design especially in the change of lace. 3. As a result of the regression analysis the images affecting preferences were pretty fascinating natural appropriate sexy and clean.

  • PDF

Design of Gate Locations, Molding Conditions, and Part Structure to Reduce the Warpage of Short-Fiber Reinforced Injection Molded Part (단섬유 보강 사출성형품의 휨 감소를 위한 게이트 위치, 성형 조건 및 제품 구조 설계)

  • Choi, D.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.443-448
    • /
    • 2008
  • Fiber reinforced injection molded parts are widely used in recent years because of their improved properties of materials such as specific stiffness, specific strength, and specific toughness. The demand for products with high precision is increasing and it is important to minimize the warpage of the products. The warpage of short-fiber reinforced product is caused by anisotropy induced by fiber orientation as well as the residual stresses induced during the molding process. In order to reduce the warpage of the part, it is important to achieve successful mold design, processing control, and part design. In the present study, the design of gating system, molding condition, and part structure were carried out and verified with numerical analysis using a commercial CAE code Moldflow. The numbers and locations of gates were iteratively determined, and the molding conditions which can decrease the warpage of the part were investigated. Finally, slight structural modification of the part was conducted to reduce the locally concentrated warpage.

Rib Design in Injection Molding (사출성형에서의 리브 설계)

  • 강성남;허용정
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.11a
    • /
    • pp.139-143
    • /
    • 2001
  • In injection molded parts, the ribs require more complicated mold cavities and cores. But it is necessary for the parts to attach the ribs for assembly, moldability and other functional purposes. To design them appropriately considering structural strength and injection molding, the profound knowledge that includes moldability, causal effects on the properties of the part is needed. This paper describes the design methodology which enables easy, simple, time and cost-effective design for the features.