• Title/Summary/Keyword: mold design

Search Result 1,177, Processing Time 0.029 seconds

Fabrication of micro injection mold with modified LIGA micro-lens pattern and its application to LCD-BLU

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.165-169
    • /
    • 2007
  • The light guide plate (LGP) of LCD-BLU (Liquid Crystal Display-Back Light Unit) is usually manufactured by forming numerous dots by etching process. However, the surface of those etched dots of LGP is very rough due to the characteristics of etching process, so that its light loss is relatively high due to the dispersion of light. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched-dot patterned LGP, micro-lens pattern was tested to investigate the possibility of replacing etched pattern in the present study. The micro-lens pattern fabricated by the modified LiGA with thermal reflow process was applied to the optical design of LGP. The attention was paid to the effects of different optical pattern type (i.e. etched dot, micro-lens). Finally, the micro-lens patterned LGP showed better optical qualities than the one made by the etched-dot patterned LGP in luminance.

A study on the warpage in injection molded part for various rib design (사출성형품의 리브 설계에 따른 휨의 연구)

  • Lee, Min;Lyu, Min-Young
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.54-61
    • /
    • 2008
  • Warpage, which is one of the molding trouble, acts as possible factor which results in defect in assembly. In this study, a mold was designed to produce specimens with rib parallel to flow direction, specimens with rib perpendicular to flow direction and specimens without rib. This work researched change of warpage according to injection molding condition such as injection pressure, packing pressure, packing time, resin temperature, mold temperature in non-crystalline resins(PC, ABS), crystalline resins(PP, PA66), and 30% glass fiber reinforced-resins(PC, ABS, PP, PA66).Specimens with rib and Crystalline resins show more warpage than specimens without rib and non-crystalline resins, respectively. Glass fiber reinforced-resins and specimens with rib parallel to flow direction show smaller warpage than conventional resins and specimens with rib perpendicular to flow, respectively. Specimens with rib and specimens without rib show reduced warpage as packing time increases. In addition, warpage increase as resin temperature increases. It is found that CAE shows similar tendency with experiment as packing time, resin temperature. when the rib is caused, warpage will reduce and prevent the transformation. product of a irregular form occurs warpage. In the study It'll be basic data that product occurs warpage, preferablity.

  • PDF

A Theoretical Study for the Filling Balance of the Family Mold Using Variable-Runner System (가변 러너 시스템을 이용한 패밀리 금형의 충전밸런스에 관한 이론적 연구)

  • Choi, Kwon-Il;Park, Hyung-Pil;Cha, Baeg-Soon;Rhee, Byung-Ohk;Koo, Bon-Heung
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.275-278
    • /
    • 2007
  • In family mold, defects are frequently occurred by an excessive packing the smaller volume cavity during molding. Although runner size could be optimized by CAE analysis or experimental data, the filling imbalance is hardly avoided in the actual injection molding process by various means. Before this study, we developed a variable-runner system for balancing the cavity-filling for three resins (ABS, LDPE, and PA66) in the family-mold, and examined the effect of cross-sectional area reduction of a runner in the system. In this study, we examined the conditions of the pressure and temperature in the system with a CAE analysis. We also analyzed the influence of the rheological characteristic of resins to the balancing-capability of the system in order to help mold designers easily adopt the variable-runner system to their design.

  • PDF

A Study on the Effects of Products Section by Cutting Punch's Edge Angle during Roll Forming Process (롤 포밍 공정에서 컷팅 펀치 인선 각도가 제품 절단에 미치는 영향에 관한 연구)

  • Cheong, Mun-Su;Kim, Sei-Whan;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.44-49
    • /
    • 2016
  • The roll forming produces mass products using the continuous production process. Also we need the process that continuous long material or goods cutting into a desired length. Our study uses 3-D driving cutter and roll forming material as SPCC to investigate this. When we cut the material using the process of roll forming, the shear resistance is raised at the cutting punch's edge. The result is remained the trouble about burr and progressive deformation on the material. This study shows the method minimizing the above trouble. The material of punch was considering heat generated on the continuous production process. So we used the type of STD 61 for the material of punch and had the vacuum heat treatment for the surface hardness of HRC 53. The structure of the mold is designed with forming a double cam die at the upper punch and the both sides of central core. We conducted the experiment three times. In the result when had to make V-groove within the angle between 105 and 110 on the punch front end, we could get the minimum shear resistance on the punch front end. Also with the same condition we minimizes the material jams in the continuous production process.

Finite element analysis of spring back caused by frictional force in area of flange in press bending process (프레스 벤딩 공정에서 플랜지부의 마찰력이 스프링백에 미치는 영향에 대한 해석적 고찰)

  • Yun, Jae-Woong;Oh, Seung-Ho;Choi, Kye-Kwang;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.63-69
    • /
    • 2021
  • Springback is an essential task to be solved in order to make high-precision products in sheet metal forming. In this study, materials with four different elastic regions were used. For the forming analysis, the change of springback caused by the frictional force generated in the flange part during hat shape forming was considered by using the AutoForm analysis program. Factors affecting frictional force were blank holder force, friction coefficient, bead R and bead height. As a result of the forming analysis, the springback increases as the material with a larger elastic region increases. In addition, as the frictional force of the flange part increased, the tensile force in the forming direction increased and the springback decreased. In particular, the blank holder force and friction coefficient had a great effect on springback in mild materials (DC04, Al6016), and the bead effectively affects all materials. Through this study, it was considered that the springback decreased as the material with a smaller elastic region and the tensile force in the forming direction increased.

Comparison of punch life of powder high speed tool steel and high speed tool steel (분말고속도공구강과 고속도공구강의 펀치 수명 비교)

  • Lee, Woo-Ram;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • A lot of research is being done on metal materials to improve the lifespan of molded parts. As a result, excellent mold materials have been developed that withstand high hardness at high temperatures and frictional heat generated from high-speed cutting. In this study, the press mold life of powder high-speed tool steel and general high-speed tool steel was compared. Powdered high-speed steel is composed of alloying elements such as tungsten, maldividene, cobalt, chromium, and vanadium in steel, which improves wear resistance compared to high-hardness and high-speed tool steels. The mold parts of both steel types were manufactured in the same way from heat treatment to machining, and the powder high-speed tool steel was 66HRC and the high-speed tool steel was 61HRC. As a result of the experiment, it was observed that the number of punching of powder high-speed tool steel was improved by 40-50%, and powder high-speed tool steel had fewer impurities, uniform texture, and excellent surface structure. It has a microscopic structure.

Analysis of defects caused by halo defects during injection molding (사출성형 중 달무리 현상에 의한 불량에 대한 분석)

  • Lee, Soon-Young;Park, Eun-Min;Kim, Do-Hun;Kim, Yong-Chul;Yang, Chul-Seung;Jin, Gyeong-Min;Kim, Sun-Kyoung
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.57-62
    • /
    • 2019
  • In this study, we investigated the halo surface defection of various phenomenon occurred during the injection molding process which is caused by the thinning of the product thickness and the importance of the appearance. Surface analysis was performed to observe the difference between the surface where defects appeared and the surface which did not appear. Based on these results, we analyzed the phenomenon of halo surface defects was caused by unstable flow of resin generated in injection molding and velocity change of flow front. Furthermore, we will conduct a clear analysis of halo surface defects through observations through optical microscopy and subsequent observations with atomic force microscope. It has been analyzed that halo in PP is due to the rheological difference between the crystalline and amorphous regions while that in PC/ABS is due to shear separation of PC and ABS.

A Study on Development of the Flask-Molds for Manufacturing of the Elbow Shape Shell Molds (엘보어 쉘주형 금형 개발에 관한 연구)

  • Choi, Jae-Hoon;Park, Jong-yeon
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • Since the shell-molds are used to make casting the metal parts for the automobile industry, the quality may well be inconsistent with the lower productivity, increasing the cost of the end products. The primary elbow design shell molded steel castings being produced through extrusion process has $180^{\varnothing}$ O.D., $150^{\varnothing}$ I.D., 14mm thickness and 400mm length, while being processed onto the left side of the tubing. The primary cause for the poor processing is the uneven manual shell molding. If the manual shell molds should be produced to have even quality, they would not be processed for tube linking. The purpose of this study was to develop the flask-molds for manufacturing of the shell molds to ensure mass-production, consistent quality, ommission of processing and comfortable working environment. For this purpose, four flask-molds were produced and thereby, four shell molds were assembled. In particular, the shell molds for processing were formed of the fine coated sand to be blown. As a result, productivity increased about three times, while a consistent quality was ensured. Furthermore, the tubes could be linked with each other without being processed, while pallets could be stacked, stored, transported and managed more easily. In a nut-shell, the molding theory could be applied more effectively. However, it is conceived that this study should be followed up by future studies which will research into reliability and endurability of the end products.

  • PDF

A study on the design and manufacture of test work drawing die (Test Work 드로잉 금형의 설계 및 제작에 관한 연구)

  • Lee, Chun-Kyu;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.13-17
    • /
    • 2018
  • It was analyzed and experimented on the change of the material thickness according to the size of the "R" of the punch and die corners using the material of SCP-1 0.25mm As a result, the following conclusions were obtained. Tensile strength analysis and safety analysis of materials are very important process for each process in strip layout, and Through this, the Influx of material and the deformation of the material were found. As a result of safety analysis and tensile thickness analysis, when the corner R of the punch was 0.3 mm and the edge R of the die was 1.0 mm The inflow of the material was not smooth, and the thickness of the corner part became 0.2 mm, causing cracks. when the corner R of the punch was 0.5 mm and the edge R of the die was 1.5 mm The inflow of the material was smooth, The thickness of the corners of the product is 0.21mm and It was considered that cracks do not occur when the thickness of the bottom surface and the body part becomes thin. The results obtained by applying the results obtained from the analysis, In Experimental Condition 1, a crack occurred in the same part of the analysis In Experimental Condition 2, the flow of the material was smooth and the drawing processing could be performed without generating cracks.

Designing Mold Feed Systems for Plug Cover Housing with Filling Analysis (충전해석에 의한 Plug Cover Housing 금형의 피드시스템 설계)

  • Park, Jong-Cheon;Yu, Man-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.123-130
    • /
    • 2018
  • In this study, the optimum design of mold feed systems is determined for plug cover housing (PCH), which is a cover-assembly product that protects the wiring of automobile connectors. The design goal is to achieve the filling balance of the resin in the left and right covers while avoiding the occurrence of weld lines in the hinge as much as possible. For the optimization, an orthogonal array experiment and a main effect analysis of the design factors are performed, and the factors that cause the interactions with the two design characteristics are selected as the design variables. We present some design alternatives, i.e., some combinations of the design variables, and analyze the filling-simulation results, expected molding risk, and cost economics to select an optimum design solution among the design alternatives. In the optimal solution, the weld line is generated at a position outside the hinge, and the filling balance is also acceptable, showing that both design goals can be satisfied simultaneously despite conflicting with each other.