• Title/Summary/Keyword: mold design

Search Result 1,165, Processing Time 0.048 seconds

Convergence Study on the Thermal Stress According to the Structure of Automotive Heating Seat (자동차 난방 시트의 구조에 따른 열응력 해석에 대한 융합 연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.169-174
    • /
    • 2019
  • Because the warm and cozy demand of automotive driving seat increases, the research development of heating seat has been actively made. In this study, the thermal stress analysis and the structural analysis were carried out with three kinds of heating seats of A, B and C. By executing the thermal analysis with the same material, model A was shown to have the heat transfer better than model B or model C at the study result. So, it could be seen that the heat transfers became different each other though models had the same material according to the configuration of product. Adding the hot wire in order to expect the safer heating can be better heating, but there is the limit on the aspect considering the capability in contrast to the price of product. Generally, model B is thought to be safest thermally than model A or model C in every respect. As the design data of the automotive heating seat product with the durability and safety acquired by this study result are used, the artistic environment can be promoted by being grafted onto the automotive driving seat.

A Study of the Development of Gardening Products Converged with Cultural Contents of Kongjwi Patjwi (콩쥐 팥쥐전의 문화콘텐츠를 융합한 가드닝 제품 개발 연구)

  • Choi, Jung-Hwa;Lee, Myung-Ah
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.501-508
    • /
    • 2019
  • Today, home gardening is in the spotlight. Therefore, the necessity of developing a new type of gardening product was raised according to the consumer's desires. This study, the contents were developed using sparrows, a helper who helped the bean rat's grain-cracking task among the characters of 'kongjwi patjwi'. The cultural contents convergence product is a lid production that is used at the end of the plant support. The fabrication method was designed using UG NX program after design research, and after printing by 3D polyjet method, mold was made and cast into silicon and resin. Through product manufacturing, we could confirm the public's interest in the possibility of new products and creativity. In the future, it is expected that the development of products incorporating cultural contents through various cultural archetypes will be activated, contributing to the enhancement of economic added value and national brand value.

A Convergent Study on Durability over the Exhaust Manifold Shape of Medium-sized Car (중형 자동차의 배기매니폴드 형상에 따른 내구성에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.199-204
    • /
    • 2021
  • In this study, the configurations of the two engine exhaust manifolds were designed. And the strengths and durabilities were analyzed through the structural analysis and natural frequency analyses of these models. As the result of structural analysis, the strength of model A is much better than that of model B because the maximum stress and deformation of model B are considerably greater than those of model A by more than 9 and 39 times, respectively. It can also be confirmed that model A has the durability better than model B because the maximum frequency of model A is greater than the natural frequency of model B and its maximum deformation is smaller than model B. The result of this study can be used to investigate the durability due to the exhaust manifold shape of medium-sized car without actual test. It also seems to be helpful in the aesthetic convergent design of small car muffler.

A Convergent Investigation on the Air Flow Analysis of a Light Aircraft Propeller (경비행기 프로펠러의 공기 유동해석에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.131-135
    • /
    • 2020
  • In this study, the models with three, five and ten wings of the propeller which made a light aircraft fly were performed by air flow analyses. As for the flow model A with the shape with five wings, Model A can be seen to be the most ideal flow of air. The flow of air through the number of wings, which is not too many or too few, shows the most smooth flowing form. The smaller the number of propeller blades, the smaller the flow of air. Model A is applied under pressure of up to 0.5631 MPa at the front of air flow. Also, models B and C are applied under pressures of 0.5758 MPa and 0.5589 MPa, respectively. Comparing the pressure contours for each model of flux, model B can be shown to have the highest pressure distribution. The result of this study can be used to investigate the air flow without actual testing. It also seems to be helpful in the aesthetic convergent design of light aircraft propeller.

A Convergent Study on the Structural Analysis of Stabilizer at Light and Large Sized Cars (경차와 대형차에서의 스테빌라이저들의 구조해석에 관한 융합연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.173-177
    • /
    • 2021
  • In this study, the torsional rigidity and durability of the stabilizer models with the hollow axis of light and large sized cars were compared and investigated each other. Model 1 was applied with the moment more than three times as much as model 2, but the maximum deformation of model 1 was seen to be about 2.6 times larger than that of model 2. Commonly, models 1 and 2 are seen to get the most stress at the neck of stabilizer bar link. Also, the maximum stress of model 1 was about 2.9 times larger than that of model 2. Model 1 at large car showed more than 20 times more deformed energy than model 2 at small car. Overall, it could be examined that the deformation energy of the bracket part on the side where the moment fixing the stabilizer bar was applied was greater than that of the stabilizer. It is thought that the analysis results in this study can be helped at the design of its convergent research as a durable component of the stabilizer at a light or large sized car.

A study on the construction of the quality prediction model by artificial neural intelligence through integrated learning of CAE-based data and experimental data in the injection molding process (사출성형공정에서 CAE 기반 품질 데이터와 실험 데이터의 통합 학습을 통한 인공지능 품질 예측 모델 구축에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.24-31
    • /
    • 2021
  • In this study, an artificial neural network model was constructed to convert CAE analysis data into similar experimental data. In the analysis and experiment, the injection molding data for 50 conditions were acquired through the design of experiment and random selection method. The injection molding conditions and the weight, height, and diameter of the product derived from CAE results were used as the input parameters for learning of the convert model. Also the product qualities of experimental results were used as the output parameters for learning of the convert model. The accuracy of the convert model showed RMSE values of 0.06g, 0.03mm, and 0.03mm in weight, height, and diameter, respectively. As the next step, additional randomly selected conditions were created and CAE analysis was performed. Then, the additional CAE analysis data were converted to similar experimental data through the conversion model. An artificial neural network model was constructed to predict the quality of injection molded product by using converted similar experimental data and injection molding experiment data. The injection molding conditions were used as input parameters for learning of the predicted model and weight, height, and diameter of the product were used as output parameters for learning. As a result of evaluating the performance of the prediction model, the predicted weight, height, and diameter showed RMSE values of 0.11g, 0.03mm, and 0.05mm and in terms of quality criteria of the target product, all of them showed accurate results satisfying the criteria range.

Design and Evaluation of a Scalding Animal Model by the Boiling Water Method

  • Hua, Cheng;Lyu, Lele;Ryu, Hyun Seok;Park, So Young;Lim, Nam Kyu;Abueva, Celine;Chung, Phil-Sang
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.51-57
    • /
    • 2020
  • Background and Objectives For experiments on simulated burn, the preparation of an animal model is a very important step. The purpose of the current experiment is to design a simple and controllable method for the preparation of third-degree scald in a mouse model using the boiling water method. Materials and Methods A total of 18 Swiss mice were used. After the anesthetization, the mice were scalded by boiling water (100℃) using a mold with a 1 cm2 circle area on the dorsum at contact times of 3s, 5s, and 8s. After confirming that 8 seconds of scald can cause a third-degree scald, the skin samples were collected at day 2, 4, 6, 8, 10, and 12, and analyzed by histopathological examinations. The wound retraction index (WRI) was also measured. Results Third-degree scald involving full-thickness skin was observed in the 8-second scald group, while a 3-second scald caused a superficial second-degree scald and a 5-second scald caused a deep second-degree scald. After third-degree scald, the burn wound continued to contract until day 14. Conclusion The scalding model of mice can be successfully established by the boiling water method. This method is easy to operate, it has a low cost, and it can control the scald depth by controlling the scald time. This is adequate to study skin thermal injury in the future. The scald model established by this method can last for 14 days.

Study on Effect of the printing direction and layer thickness for micro-fluidic chip fabrication via SLA 3D printing (적층 방식 3차원 프린팅에 의한 미세유로 칩 제작 공정에서 프린팅 방향 및 적층 두께의 영향에 관한 연구)

  • Jin, Jae-Ho;Kwon, Da-in;Oh, Jae-Hwan;Kang, Do-Hyun;Kim, Kwanoh;Yoon, Jae-Sung;Yoo, Yeong-Eun
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.58-65
    • /
    • 2022
  • Micro-fluidic chip has been fabricated by lithography process on silicon or glass wafer, casting using PDMS, injection molding of thermoplastics or 3D printing, etc. Among these processes, 3D printing can fabricate micro-fluidic chip directly from the design without master or template for fluidic channel fabricated previously. Due to this direct printing, 3D printing provides very fast and economical method for prototyping micro-fluidic chip comparing to conventional fabrication process such as lithography, PDMS casting or injection molding. Although 3D printing is now used more extensively due to this fast and cheap process done automatically by single printing machine, there are some issues on accuracy or surface characteristics, etc. The accuracy of the shape and size of the micro-channel is limited by the resolution of the printing and printing direction or layering direction in case of SLM type of 3D printing using UV curable resin. In this study, the printing direction and thickness of each printing layer are investigated to see the effect on the size, shape and surface of the micro-channel. A set of micro-channels with different size was designed and arrayed orthogonal. Micro-fluidic chips are 3D printed in different directions to the micro-channel, orthogonal, parallel, or skewed. The shape of the cross-section of the micro-channel and the surface of the micro-channel are photographed using optical microscopy. From a series of experiments, an optimal printing direction and process conditions are investigated for 3D printing of micro-fluidic chip.

Diecasting Design for a Fuel Tank Valve of LPG Automobiles by Fluid Flow Simulation (자동차용 LPG 연료 탱크 밸브의 다이캐스팅 방안의 유동해석)

  • Seong-Ho Bae;Sang-Chul Kim;Hee-Soo Kim
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.331-336
    • /
    • 2022
  • In this study, we investigated the casting designs for fuel tank valves for LPG automobiles. The valves we studied have two cavities inside the part. There is inevitable air entrapment inside the cavities. In order to reduce this kind of casting defect, we carried out computer simulations of molten metal flow during the diecasting process of the target products. The main process parameters were the ingate position, product direction, and injection velocity. We also examined the possible use of vacuum diecasting. The position of the air entrapment was almost identical for all the ingate positions and product directions. We found that the change of the injection velocity affects the position of the air entrapment. In case of vacuum diecasting, the position of the air entrapment was similar to the previous cases, but it is expected that the air entrapment will be highly reduced in a real situation due to the vacuumed space.

A study on the fiber orientation and mechanical characteristics of injection molded fiber-reinforced plastic for the rigidity improvement of automotive parts (자동차 부품의 강성 보강을 위한 섬유강화 플라스틱 사출성형품의 섬유 배향 및 기계적 특성에 관한 연구)

  • Eui-Chul Jeong;Yong-Dae Kim;Jeong-Won Lee;Seok-Kwan Hong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.24-33
    • /
    • 2022
  • Fiber-reinforced plastics(FRPs) have excellent specific stiffness and strength, so they are usually used as automotive parts that require high rigidity and lightweight instead of metal. However, it is difficult to predict the mechanical properties of injection molded parts due to the fiber orientation and breakage of FRPs. In this paper, the fiber orientation characteristics and mechanical properties of injection molded specimens were evaluated in order to fabricate automotive transmission side covers with FRPs and design a rib structure for improvement of their rigidity. The test molds were designed and manufactured to confirm the fiber orientation characteristics of each position of the injection molded standard plate-shaped specimens, and the tensile properties of the specimens were evaluated according to the injection molding conditions and directions of specimens. A gusset-rib structure was designed to improve the additional structural rigidity of the target products, and a proper rib structure was selected through the flexural tests of the rib-structured specimens. Based on the evaluation of fiber orientation and mechanical characteristics, the optimization analyses of gate location were performed to minimize the warpage of target products. Also, the deformation analyses against the internal pressure of target product were performed to confirm the rigidity improvement by gusset-rib structure. As a result, it could be confirmed that the deformation was reduced by 27~37% compared to the previous model, when the gusset-rib structure was applied to the joining part of the target products.