• Title/Summary/Keyword: molar ratios

Search Result 302, Processing Time 0.019 seconds

Influence of Initial Molar Ratios on the Performance of Low Molar Ratio Urea-Formaldehyde Resin Adhesives

  • LUBIS, Muhammad Adly Rahandi;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.136-153
    • /
    • 2020
  • In this paper, the influence of initial formaldehyde/urea (F/U) molar ratios on the performance of low molar ratio (1.0) urea-formaldehyde (UF) resin adhesives has been investigated. Two initial F/U molar ratios, i.e., the first and second initial molar ratios were used for the alkaline addition reaction. Three levels of the first initial F/U molar ratios (2.0, 3.0, and 4.0) and two levels of the second initial molar ratios (2.0 and 1.7) were employed to prepare a total of six UF resins with an identical final molar ratio (1.0). The basis properties, functional groups, molecular weight, crystallinity, and thermal curing properties of the UF resins were characterized in detail. Higher levels (3.0 and 4.0) of the first initial F/U molar ratio provided the UF resins with better properties (non-volatile solids content, viscosity, gelation time, pH, and specific gravity) than those of the resins prepared with the conventional level F/U molar ratio of 2.0. Statistical analysis suggested that combining the first and second initial molar ratio of 4.0 with 1.7 would result in UF resins with greater adhesion strength and lower formaldehyde emission than those of the resins prepared with other molar ratios. The results showed that higher levels of the first initial molar ratio resulted in a more branched structure, as indicated by GPC, FTIR, DSC, XRD, and greater adhesion strength than those of the other UF resins with an identical final molar ratio of 1.0.

Critical Ratios of Ca/Al and Mg/Al in Nutrent Solution Limiting Growth of Pinus thunbergii (해송의 생육을 저해하는 Ca/Al 및 Mg/Al의 한계 비율)

  • Lee, Wi-Young;Yang, Jae E.;Park, Chang-Jin;Zhang, Yong-Seon;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.329-335
    • /
    • 2004
  • Acid deposition in forest adjacent to the industrial complexes causes soil acidification resulting in the leaching of cations, decreases of buffering capacity and increases of toxic metal concentrations such as Al, Fe, Mn and Cu in soil solution. Changes of nutrient availability equilibria by acid deposition have been known to retard the growth of pine trees. Objective of this research was to assess the critical ratios of Ca/Al and Mg/Al limiting the growth of Pinus thunbergii in the hydroponic culture. The Ca concentration and Ca/Al ratio in stalks of pine tree were increased as increasing Ca/Al molar ratio in the nutrient solution, but were not changed when the Ca/Al molar ratio was adjusted to greater than 1. Growth of Pinus thunbergii was inhibited at the Ca/Al molar ratio lower than l due to the Ca deficiency. The molar ratios of Ca/Al in the needles of Pinus thunbergii showed the similar tendency with the stalks. This indicated that Ca/Al molar ratio of 1 in the growth media was the critical level limiting the growth of Pinus thunbergii. Concentration of Mg and Mg/Al molar ratios in the stalks of pine tree were increased as increasing Mg/Al molar ratio in nutrient solution. Molar ratios of Mg/Al in the needles were increased as increasing Mg/Al ratios in nutrient solution up to 0.83, which was the critical level limiting the growth of Pinus thunbergii.

Curing Behaviors and Mechanical Properties of Unsaturated Polyester Hosing with Different Glycol Molar Ratios (글리콜 몰비가 다른 UPE 수지의 경화거동과 물성에 관한 연구)

  • 이상효;이장우
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.599-609
    • /
    • 2000
  • In order to improve the mechanical properties of unsaturated polyester (UPE) resins, the UPE resins with different glycol molar ratios were prepared. The effects of molar ratios of the UPE resins on the curing behaviors and mechanical properties were investigated. The microgel reaction mechanism was employed to characterize the system. It was found that the final conversion increased with increasing NPG molar ratios, and the conversion at the peak of differential scanning calorimetry (DSC) thermogram appeared to decrease with increasing NPG molar ratios. The flexural strength, tensile modulus, water resistance, and infiltration increased with increasing NPG content, but the tensile strength, tensile elongation, and flexural modulus decreased. Among the UPE resins prepared from the glycols with the molar ratios (PG/NPG) of 0.5/0.5, 0.25/0.75, those of laminated composites plates showed better mechanical properties.

  • PDF

Immobilization of sodium-salt wastes containing simulated 137Cs by volcanic ash-based ceramics with different Si/Al molar ratios

  • Sun, Xiao-Wen;Liu, Li-Ke;Chen, Song
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3952-3965
    • /
    • 2021
  • In this study, volcanic ash was used as raw material to prepare waste forms with different silicon/aluminum (Si/Al) molar ratios to immobilize sodium-salt waste (SSW) containing simulated 137Cs. Effects of Si/Al molar ratios (3:1 and 2:1) and sodium salts on sintering behavior of waste forms and immobilization mechanism of Cs+ were investigated. Results indicated that the main mineral phase of sintered waste-form matrixes was albite, and the formation of major phases was found to depend on Si/Al molar ratios. Si/Al molar ratio of 2 was favorable for the formation of pollucite, and the formation and crystallization of mineral phases were also decided based on physicochemical characteristics of sodium salts. Furthermore, product consistency test results indicated that the immobilization of Cs+ was related to Si/Al molar ratio, types of sodium salts, and glassy phase. Waste forms with Si/Al molar ratio of 2 exhibited better ability to immobilize Cs+, whereas the influence of sodium salts and glassy phases on the immobilization of SSW showed more complicated relationship. In waste forms with Si/Al molar ratio of 2, Cs+ leaching concentrations of samples containing Na2B4O7·10H2O and NaOH were low. Na2B4O7·10H2O easily transformed into liquid phase during sintering to consequently achieve low temperature liquid-phase sintering, which is beneficial to avoid the volatilization of Cs+ at high temperature. Results clearly reveal that waste forms with Si/Al molar ratio of 2 and containing Na2B4O7·10H2O show excellent immobilization of Cs+.

Performance of Urea-Formaldehyde Resins Synthesized at Two Different Low Molar Ratios with Different Numbers of Urea Addition

  • Jeong, Bora;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.221-228
    • /
    • 2019
  • This study reports the performance of urea-formaldehyde (UF) resins prepared at two different low formaldehyde/urea (F/U) mole ratios with different numbers of urea addition during synthesis. The second or third urea was added during the synthesis of UF resins to obtain two different low molar ratios of 0.7 and 1.0, respectively. The molecular weights, cure kinetics, and adhesion performance of these resins were characterized by the gel permeation chromatography, differential scanning calorimetry, and tensile shear strength of plywood, respectively. When the number of urea additions and F/U molar ratio increased, the gelation time decreased, whereas the viscosity and molecular weight increased. Further, the UF resins prepared with the second urea and 1.0 molar ratio resulted in greater activation energy than those with third urea and 0.7 molar ratio. Tensile shear strength and formaldehyde emission (FE) of the plywood that bonded with these resins increased when the number of urea additions and molar ratio increased. These results suggest that the UF resins prepared with 0.7 molar ratio and third urea addition provide lower adhesion performance and FE than those resins with 1.0 mole ratio and the second urea addition.

Positional relationship between mandibular third molar and mandibular canal in cone beam computed tomographs

  • Yu, Su-Kyoung;Lee, Ji-Un;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.37 no.4
    • /
    • pp.197-203
    • /
    • 2007
  • Purpose: To provide diagnostic information by evaluation of the positional relationship between the mandibular third molar and the mandibular canal. Materials and Methods: Eighty-nine mandibular third molars were classified as mesioangular, horizontal, vertical, distoangular groups. The distances between the mandibular third molar and the mandibular canal were measured in cone-beam computed tomographs. The height and width ratios of distances from the mandibular third molar and the mandibular canal to the mandibular inferior border and to the lingual cortical plate were calculated. Results: The vertical and buccolingual distances between the mandibular third molar and the mandibular canal were 0.03 mm, 2.96 mm in the mesioangular, 0.37 mm, 3.38 mm in the horizontal, -1.50 mm, 1.38 mm in the vertical, -1.10 mm, 4.20 mm in the distoangular group. There were significant differences in vertical (P < 0.05), but not in buccolingual (P>0.05). The height and width ratios of distances on the mandibular third molar were 47.1 %, 36.1 % in the mesioangular, 47.4%, 34.4% in the horizontal, 37.0%, 46.7% in the vertical, 40.9%, 37.4% in the distoangular group. There were significant differences between the mesioangular and the vertical group, and the horizontal and the vertical group in height ratio (P < 0.05), and also between the mesioangular and the vertical group in width ratio (P < 0.05). The height and width ratios of distances on the mandibular canal showed no significant differences between groups (P > 0.05). Conclusion : The mesioangular group showed the nearest distance between the mandibular third molar and the mandibular canal vertically. The root apex of the mandibular third molar was positioned more buccally in the vertical group than in the mesioangular group.

  • PDF

Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer

  • Abadel, Aref A.;Albidah, Abdulrahman S.;Altheeb, Ali H.;Alrshoudi, Fahed A.;Abbas, Husain;Al-Salloum, Yousef A.
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.127-140
    • /
    • 2021
  • In this study, twenty-five geopolymer (GP) mixes were prepared by varying the alkaline solids to Metakaolin (MK) and sodium silicate to NaOH ratios from 0.1 to 0.5 and 0.2 to 1.0, respectively, thus giving a wide range of molar ratios of silica to alumina, sodium oxide to alumina and water to sodium oxide. The compressive strength of these GP mixes was determined for four curing schemes involving oven curing at 100℃ for 24 h and three ambient curing with the curing ages of 3, 14, and 28 days. The test results revealed that for the manufacture of GP binder for structural applications of strength up to 90 MPa, the molar ratio of silica to alumina should be greater than 2.3, sodium oxide to alumina should be between 0.6 to 1.2, and water to sodium oxide should not exceed 12. The compressive strength of ambient cured GP mortar gets stabilized at 28 days of ambient curing. Experimental findings were also corroborated by GP microstructure analysis. The embodied energy of MK-based GP mortars, especially of high strength, is significantly less than the cement mortar of equivalent strength.

Lime based stabilization/solidification (S/S) of arsenic contaminated soils

  • Moon, Deok-Hyun
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.12a
    • /
    • pp.51-62
    • /
    • 2004
  • Lime based stabilization/solidification (S/S) can be an effective remediation alternative for the immobilization of arsenic (As) in contaminated soils and sludges. However, the exact immobilization mechanism has not been well established, Based on previous research, As immobilization could be attributed to sorption and/or inclusion in pozzolanic reaction products and/or the formation of calcium-arsenic (Ca-As) precipitates. In this study, suspensions of lime-As were studied in an attempt to elucidate the controlling mechanism of As immobilization in lime treated soils. Aqueous lime-As suspensions (slurries) with varying Ca/As molar ratios (1:1, 1.5:1, 2:1, 2.5:1 and 4:1) were prepared and soluble As concentrations were determined. X-ray diffraction (XRD) analyses were used to establish the resulting mineralogy of crystalline precipitate formation. Depending on the redox state of the As source, different As precipitates were identified. When As (III) was used, the main precipitate formation was Ca-As-O. With As(V) as the source, Ca4(OH)2(AsO4)2${\cdot}$4H2O formed at Ca/As molar ratios greater than 1:1. A significant increase in As (III) immobilization was observed at Ca/As molar ratios greater than 1:1. Similarly, a substantial increase in As (V) immobilization was noted at Ca/As molar ratios greater than or equal to 2.5: 1. This observation was also confirmed by XRD. The effectiveness of both As (III) and As(V) immobilization in these slurries appeared to increase with increasing Ca/As molar ratios.

  • PDF

Long Term Formaldehyde Emission Trend of Wood Panels Manufactured by F/U Molar Ratios in Urea Resin Adhesive (요소수지의 F/U 몰비별로 제조된 목질패널의 포름알데히드 장기 방출 경향)

  • Park, Heon
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • This study was carried out to measure formaldehyde emission with the passing of two years from plywood, sliver-board and strand-board bonded with urea resins which were made of 6 f/U molar ratios. The urea resins were manufactured by six kinds of formaldehyde/urea molar ratio of 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0. 1. The plywood with molar ratio of 1.0 satisfied the KS F3101 $F_2$ directly after manufacture. The plywood with molar ratio of 1.2 satisfied m 3 days. The plywood with molar ratio of 1.4 satisfied the $F_3$ in 3 days and the $F_2$ in 600 days. And the plywood with molar ratio of 1.8 and 2.0 satisfied the $F_3$ in 365 days, but didn't satisfy the $F_2$ in 730 days. 2. Sliver-board with molar ratio of 1.0 and 1.2 satisfied the KS F3104 $E_2$ right after manufacture. Sliver-board with molar ratio of 1.4 and 1.6 satisfied in 150 and 360 days, respectively. Sliver-board with molar ratio of 1.8 and 2.0 satisfied in 730 days. 3. Strand-board with molar ratio of 1.0 and 1.2 satisfied the KS F3104$ E_2$ directly after manufacture. Strand-board with molar ratio of 1.4 and 1.6 satisfied in 150 days. But Strand-board with molar ratio of 1.8 and 2.0 didn't satisfied in 730 days.

  • PDF

Age Estimation by Radiological Measuring Pulp Chamber of Mandibular First Molar in Korean Adults

  • Jeon, Hye-Mi;Kim, Jin-Hwa;Heo, Jun-Young;Ok, Soo-Min;Jeong, Sung-Hee;Ahn, Yong-Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.40 no.4
    • /
    • pp.146-154
    • /
    • 2015
  • Purpose: The purpose of present study was to develop a method for assessing the chronological age of Korean adults based on the relationship between age and size of pulp cavity using dental radiographs of mandibular first molars. Methods: A total of 325 dental radiographs of Korean adults with known age and gender were selected for the study (199 males and 126 females) which were taken in the period between January 2009 and June 2014 at the Pusan National University Dental Hospital. The measurements were carried out on both orthopantomographs (OPGs) and intraoral periapical radiographs of mandibular first molar and the following ratios were calculated: pulp chamber floor height ratio (F/L), pulp chamber ceiling height ratio (R/L), and pulp chamber depth ratio (D/L). Results: The ratios of measurements on intraoral periapical images of mandible first molar generally produce more reliable data than the measurements on OPGs. The pulp chamber floor height ratio and pulp chamber thickness ratio showed significant correlation with age, whereas the pulp chamber ceiling height ratios showed weak correlation with age. It was found that the best correlations between the ratios and age were found for pulp chamber thickness ratios (r=-0.731 to -0.751). The multiple regression models were derived using 3 ratios that were significantly correlated with age. The determination coefficients ($R^2$) of the models ranged from 0.556 to 0.596. Conclusions: Our results indicate that the pulp chamber thickness and pulp chamber floor height in mandibular first molar are an age-dependent variable in adults which can be used to estimate age with reasonable accuracy. The higher image quality of dental radiographs will probably narrow the age estimation error and improve dental age estimation.