• Title/Summary/Keyword: moisture transfer coefficient

Search Result 44, Processing Time 0.024 seconds

Effect of Hypotonic and Hypertonic Solution on Brining Process for Pork Loin Cube: Mass Transfer Kinetics (돼지고기 등심의 염지공정에서 소금농도의 영향: 물질전달 동역학을 중심으로)

  • Park, Min;Lee, Nak Hun;In, Ye-Won;Oh, Sang-Yup;Cho, Hyung-Yong
    • Food Engineering Progress
    • /
    • v.23 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • The impregnation of solid foods into the surrounding hypotonic or hypertonic solution was explored as a method to infuse NaCl in pork loin cube without altering its matrix. Mass transfer kinetics using a diffusive model as the mathematical model for moisture gain/loss and salt gain and the resulting textural properties were studied for the surrounding solutions of NaCl 2.5, 5.0, 10.0 and 15% (w/w). It was possible to access the effects of brine concentration on the direction of the resulting water flow, quantify water and salt transfer, and confirm tenderization effect by salt infusion. For brine concentrations up to 10% it was verified that meat samples gained water, while for processes with 15% concentration, pork loin cubes lost water. The effective diffusion coefficients of salt ranged from 2.43×10-9 to 3.53×10-9 m2/s, while for the values of water ranged from 1.22×10-9 to 1.88×10-9 m2/s. The diffusive model was able to represent well salt gain rates using a single parameter, i.e. an effective diffusion coefficient of salt through the meat. However, it was not possible to find a characteristic effective diffusion coefficient for water transfer. Within the range of experimental conditions studied, salt-impregnated samples by 5% (w/w) brine were shown with minimum hardness, chewiness and shear force.

Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions

  • Gadalla, Mohamed;El Kadi, Hany
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.429-445
    • /
    • 2009
  • Thermal stability of quasi-isotropic composite and polymeric structures is considered one of the most important criteria in predicting life span of building structures. The outdoor applications of these structures have raised some legitimate concerns about their durability including moisture resistance and thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe climatic conditions such as heat flux and frigid climate would change the material behavior and thermal viability and may lead to the degradation of material properties and building durability. This paper presents an analytical model for the generalized problem. This model accommodates the non-linearity and the non-homogeneity of the internal heat generated within the structure and the changes, modification to the material constants, and the structural size. The paper also investigates the effect of the incorporation of the temperature and/or material constant sensitive internal heat generation with four encountered climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric structures. This can eventually result in the failure of such structures. Detailed critical analyses for four case studies which consider the population of the internal heat generation, cylindrical size, material constants, and four different climatic conditions are carried out. For each case of the proposed boundary conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure environment.

Drying Characteristics of Osmotically Pre-treated Carrots (삼투처리한 당근의 건조 특성)

  • Youn, Kwang-Sup;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1126-1134
    • /
    • 1996
  • The physical characteristics changes of carrots during drying were studied to minimize the quality degradation by applying improved drying process and pretreatment method. Physico-chemical properties of the product were analyzed, and then, drying mechanisms were explained by diffusion coefficients and drying models. In hot air drying process, the drying and rehydration efficiencies were high at low relative humidity and high temperature. Browning degree and specific volume also showed similar trend to drying efficiency. Diffusion coefficient, which describes moisture transfer, was also high at low relative humidity and at high temperature. It was verified using. Arrhenius equation that drying process was influenced by temperature. It was also observed during experiment that temperature changes were more effective in drying than relative humidity changes. Quadratic model was the most fittable in explaining the process. As a result of analyzing the experimental data with respect to the drying time, the contents of carotene and moisture could be modeled as a polynomial. As the air velocity increased, drying performance and rehydration efficiency increased.

  • PDF

Simulation of Rough Rice Drying by Natural Air(I) (자연공기(自然空氣)에 의한 벼건조(乾燥) 시뮤레이션(I))

  • Chang, D.I.;Chung, D.S.;Pfost, H.B.;Calderwood, D.L.
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.118-128
    • /
    • 1983
  • Simulation model of natural air grain drying was discussed and modified to predict the changes of grain moisture content and dry matter loss of rough rice drying. The modified simulation model was then validated using actual test data. A series of simulated drying tests using official weather data for 15 years from Beaumont, Texas, was taken to make minimum airflow rate and maximum bed depth of rough rice drying by natural air, under different conditions of initial moisture content of rough rice, airflow rate and harvest date.

  • PDF