• 제목/요약/키워드: moisture environment

검색결과 1,031건 처리시간 0.034초

A Study of Soil Moisture Retention Relation using Weather Radar Image Data

  • Choi, Jeongho;Han, Myoungsun;Lim, Sanghun;Kim, Donggu;Jang, Bong-joo
    • Journal of Multimedia Information System
    • /
    • 제5권4호
    • /
    • pp.235-244
    • /
    • 2018
  • Potential maximum soil moisture retention (S) is a dominant parameter in the Soil Conservation Service (SCS; now called the USDA Natural Resources Conservation Service (NRCS)) runoff Curve Number (CN) method commonly used in hydrologic modeling for event-based flood forecasting (SCS, 1985). Physically, S represents the depth [L] soil could store water through infiltration. The depth of soil moisture retention will vary depending on infiltration from previous rainfall events; an adjustment is usually made using a factor for Antecedent Moisture Conditions (AMCs). Application of the method for continuous simulation of multiple storms has typically involved updating the AMC and S. However, these studies have focused on a time step where S is allowed to vary at daily or longer time scales. While useful for hydrologic events that span multiple days, this temporal resolution is too coarse for short-term applications such as flash flood events. In this study, an approach for deriving a time-variable potential maximum soil moisture retention curve (S-curve) at hourly time-scales is presented. The methodology is applied to the Napa River basin, California. Rainfall events from 2011 to 2012 are used for estimating the event-based S. As a result, we derive an S-curve which is classified into three sections depending on the recovery rate of S for soil moisture conditions ranging from 1) dry, 2) transitional from dry to wet, and 3) wet. The first section is described as gradually increasing recovering S (0.97 mm/hr or 23.28 mm/day), the second section is described as steeply recovering S (2.11 mm/hr or 50.64 mm/day) and the third section is described as gradually decreasing recovery (0.34 mm/hr or 8.16 mm/day). Using the S-curve, we can estimate the hourly change of soil moisture content according to the time duration after rainfall cessation, which is then used to estimate direct runoff for a continuous simulation for flood forecasting.

Analyzing Growth Reactions of Herbaceous Plants for Irrigation Management

  • Jeong, Myeong Il;Jeong, Na Ra;Han, Seung Won;Kim, Jae Soon
    • 인간식물환경학회지
    • /
    • 제23권3호
    • /
    • pp.255-265
    • /
    • 2020
  • Background and objective: The purpose of this study was to provide guidelines for irrigation management by analyzing the effects of soil moisture on the growth characteristics of herbaceous plants in green infrastructure. Methods: In a rain shelter greenhouse, the growth performance of nine species of experimental plants was assessed under different soil moisture contents (20%, 15%, 10%, 5%, and 1%) for about 5 months to analyze plant growth characteristics due to soil humidity. Methods to determine plant growth conditions include surveying growth conditions of the crowns, stems, leaves, flowers and fruits on the aerial part and surveying growth conditions of the roots in the underground part. Results: The results showed that Mukdenia rossii and Astilbe rubra grew well at 15% moisture content with irrigation intervals of 10 and 13 days, respectively. Soil moisture content of 10% with irrigation intervals of 13 and 17 days was appropriate for Sedum kamtschaticum and Pachysandra terminalis. Similarly, Aquilegia japonica and Liriope platyphylla grew well at 15% moisture content with irrigation intervals of 10 and 17 days. However, Ligularia stenocephala grew well-developed stems and roots at 1% soil moisture content and an irrigation interval of 25 days, while the optimum conditions for Lythrum anceps were 5% moisture content and an irrigation interval of 8 days. Conclusion: Although a limited number of experimental plants were used in this study, this study could propose an appropriate irrigation cycle for planting on artificial soil substrates. Based on these results, it is possible to plan suitable planting designs considered irrigation cycles.

The Effect of Hygrothermal Aging on the Properties of Epoxy Resin

  • Wang, Youyuan;Liu, Yu;Xiao, Kun;Wang, Can;Zhang, Zhanxi
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.892-901
    • /
    • 2018
  • Because of excellent electrical properties, epoxy resin is widely used in packaging and casting power equipment. Moisture and temperature in the environment are inclined to seriously affect the insulation tolerance of epoxy resin. This work focuses on the aging characteristics of epoxy resin in hygrothermal environment. Scanning electron microscopy images show that there are micro-crack, micro-slit and holes inside aged samples. The moisture absorption process undergoes three equilibrium stages and it does not follow the Fick's second law. Observing the change of hydrogen bonds in the infrared spectra of the dried samples, it is found that chemically moisture absorption immerges when the physical moisture absorption entered the third equilibrium stage. By Debye equation to fit the imaginary part of the dielectric constant, it is concluded that the uniformity of water molecule has a great influence on the electrical conductivity loss. Furthermore, the polarization loss can be more easily affected by water molecules than small free molecules. After the aged samples being dried, their real and imaginary part of the dielectric constant descend, but their original electrical properties cannot completely restored. After chemical moisture absorption appears inside the material, the residual space charges increase significantly and the charge dissipation rate slow down obviously.

벼의 함수율에 따른 도정수율의 변화 (Milled Rice Recovery Rate of Paddy with Various Moisture Contents)

  • 하유신;박경규;김혁주;홍동혁;나규동
    • Journal of Biosystems Engineering
    • /
    • 제27권2호
    • /
    • pp.125-132
    • /
    • 2002
  • In order to investigate the optimum moisture content of paddy for milling process, a series of tests were conducted by examining the recovery rate and whiteness of milled rice in relation with the various moisture content. Hwabong-byeo and Dongjin-byeo varieties which were major paddies cultivated in Korea were used for the experiment. The test was performed with small experimental milling machines. In order to minimize the unexpected factors, environment conditions were kept in constant during the experiment. As a result, the recovery rate of milled rice were varied as the changes in milling time and degree of whiteness. However, the recovery rate of milled rice increases as its moisture content increases untill a certain point of moisture content and decreases slowly afterward. This certain point can be called optimum moisture content for rice milling. Also, it has a different value depending on the variety. In this experiment, optimum moisture content of Hwabong-byeo and Dongjin-byeo were considered around 14.8% and 15.3%, respectively. It is not sure that these optimum moisture contents for the two varieties would assume the same values irrespective of harvest year and place. However, it could be concluded that the optimum moisture content for rice milling is around 15%(w.b.) for Hwabong-byeo and 15.5%(w.b.) for Dongjin-byeo, respectively.

Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 고해상도 토양수분 산정 (Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Soil Moisture Data Assimilation Scheme)

  • 김상우;이태화;천범석;정영훈;장원석;서찬양;신용철
    • 한국농공학회논문집
    • /
    • 제62권6호
    • /
    • pp.11-20
    • /
    • 2020
  • We estimated the spatio-temporally distributed soil moisture using Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images and soil moisture data assimilation technique in South Korea. Soil moisture data assimilation technique can extract the hydraulic parameters of soils using observed soil moisture and GA (Genetic Algorithm). The SWAP (Soil Water Atmosphere Plant) model associated with a soil moisture assimilation technique simulates the soil moisture using the soil hydraulic parameters and meteorological data as input data. The soil moisture based on Sentinel-1A/B was validated and evaluated using the pearson correlation and RMSE (Root Mean Square Error) analysis between estimated soil moisture and TDR soil moisture. The soil moisture data assimilation technique derived the soil hydraulic parameters using Sentinel-1A/B based soil moisture images, ASOS (Automated Synoptic Observing System) weather data and TRMM (Tropical Rainfall Measuring Mission)/GPM (Global Precipitation Measurement) rainfall data. The derived soil hydrological parameters as the input data to SWAP were used to simulate the daily soil moisture values at the spatial domain from 2001 to 2018 using the TRMM/GPM satellite rainfall data. Overall, the simulated soil moisture estimates matched well with the TDR measurements and Sentinel-1A/B based soil moisture under various land surface conditions (bare soil, crop, forest, and urban).

Simulation of Daily Soil Moisture Content and Reconstruction of Drought Events from the Early 20th Century in Seoul, Korea, using a Hydrological Simulation Model, BROOK

  • Kim, Eun-Shik
    • Journal of Ecology and Environment
    • /
    • 제33권1호
    • /
    • pp.47-57
    • /
    • 2010
  • To understand day-to-day fluctuations in soil moisture content in Seoul, I simulated daily soil moisture content from 1908 to 2009 using long-term climatic precipitation and temperature data collected at the Surface Synoptic Meteorological Station in Seoul for the last 98 years with a hydrological simulation model, BROOK. The output data set from the BROOK model allowed me to examine day-to-day fluctuations and the severity and duration of droughts in the Seoul area. Although the soil moisture content is highly dependent on the occurrence of precipitation, the pattern of changes in daily soil moisture content was clearly quite different from that of precipitation. Generally, there were several phases in the dynamics of daily soil moisture content. The period from mid-May to late June can be categorized as the initial period of decreasing soil moisture content. With the initiation of the monsoon season in late June, soil moisture content sharply increases until mid-July. From the termination of the rainy season in mid-July, daily soil moisture content decreases again. Highly stochastic events of typhoons from late June to October bring large amount of rain to the Korean peninsula, culminating in late August, and increase the soil moisture content again from late August to early September. From early September until early October, another sharp decrease in soil moisture content was observed. The period from early October to mid-May of the next year can be categorized as a recharging period when soil moisture content shows an increasing trend. It is interesting to note that no statistically significant increase in mean annual soil moisture content in Seoul, Korea was observed over the last 98 years. By simulating daily soil moisture content, I was also able to reconstruct drought phenomena to understand the severity and duration of droughts in Seoul area. During the period from 1908 to 2009, droughts in the years 1913, 1979, 1939, and 2006 were categorized as 'severe' and those in 1988 and 1982 were categorized as 'extreme'. This information provides ecologists with further potential to interpret natural phenomenon, including tree growth and the decline of tree species in Korea.

SMAP 토양수분을 위한 Landsat 기반 상세화 기법 개발 (Development of Landsat-based Downscaling Algorithm for SMAP Soil Moisture Footprints)

  • 이태화;김상우;신용철
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.49-54
    • /
    • 2018
  • With increasing satellite-based RS(Remotely Sensed) techniques, RS soil moisture footprints have been providing for various purposes at the spatio-temporal scales in hydrology, agriculture, etc. However, their coarse resolutions still limit the applicability of RS soil moisture to field regions. To overcome these drawbacks, the LDA(Landsat-based Downscaling Algorithm) was developed to downscale RS soil moisture footprints from the coarse- to finer-scales. LDA estimates Landsat-based soil moisture($30m{\times}30m$) values in a spatial domain, and then the weighting values based on the Landsat-based soil moisture estimates were derived at the finer-scale. Then, the coarse-scale RS soil moisture footprints can be downscaled based on the derived weighting values. The LW21(Little Washita) site in Oklahoma(USA) was selected to validate the LDA scheme. In-situ soil moisture data measured at the multiple sampling locations that can reprent the airborne sensing ESTAR(Electronically Scanned Thinned Array Radiometer, $800m{\times}800m$) scale were available at the LW21 site. LDA downscaled the ESTAR soil moisture products, and the downscaled values were validated with the in-situ measurements. The soil moisture values downscaled from ESTAR were identified well with the in-situ measurements, although uncertainties exist. Furthermore, the SMAP(Soil Moisture Active & Passive, $9km{\times}9km$) soil moisture products were downscaled by the LDA. Although the validation works have limitations at the SMAP scale, the downscaled soil moisture values can represent the land surface condition. Thus, the LDA scheme can downscale RS soil moisture products with easy application and be helpful for efficient water management plans in hydrology, agriculture, environment, etc. at field regions.

불포화 사질토 지반의 지반조건 및 침출수 오염도에 따른 전기비저항의 변화

  • 오명학;이주형;박준범;김형석
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.47-50
    • /
    • 2001
  • The laboratory tests were peformed to investigate the relationship between electrical resistivity and the unsaturated subsurface condition and to evaluate the contamination due to leachate based on measuring electrical resistivity. For weathered granite soil, the electrical resistivity of soil decreases as moisture density increases. The electrical resistivity of soil decreases as the concentration of leachate in pore fluid increases since leachate contains various ionic constituents. And the modified Archie's equation for applying to unsaturated sand is derived by regression analysis.

  • PDF

상재하중의 영향을 고려한 불포화 풍화토의 함수특성 평가 (Evaluation of Overburden Pressure on Soil-Water Retention Characteristics of Unsaturated Weathered Soils)

  • 박재영;박성완
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.111-118
    • /
    • 2008
  • The purpose of this paper was to investigate the overburden effect on soil-water characteristic curve and unsaturated permeability of unsaturated weathered soils. For this, unsaturated suction and permeability tests under various overburden stress were conducted respectively. Then, the coefficient of unsaturated permeability and moisture capacity of weathered soils were estimated and compared. All these results are presented in the paper.

  • PDF

기후변화 조건에서 수분구배 및 영양소 구배에 따른 굴참나무와 상수리나무 잎 형태적 특성의 생태지위 변화 (Variations in Ecological Niche of Quercus variabilis and Quercus acutissima Leaf Morphological Characters in Response to Moisture and Nutrient Gradient Treatments under Climate Change Conditions)

  • 박여빈;김의주;박재훈;김윤서;박지원;이정민;유영한
    • 한국환경복원기술학회지
    • /
    • 제27권2호
    • /
    • pp.43-53
    • /
    • 2024
  • This study attempted to elucidate the ecological niches and influencing environmental factors of Quercus variabilis and Quercus acutissima, which are representative deciduous broad-leaved trees in Korean forests, taxonomically close and genetically similar, under climate change conditions. Under climate change conditions induced by increased CO2 and temperature, soil moisture and nutrient environments were manipulated in four gradients. At the end of the growing, plants were harvested to measure growth responses, calculate ecological niches, and compare them with those of the control. Eperimental plants were grown for 180 days in a glass greenhouse designed with four gradients each for soil moisture and nutrient environments under climate change conditions induced by increased CO2 and temperature. After harvesting, growth responses of leaf traits were measured, ecological niches were calculated, and these were compared with those of the control groups. Furthermore, the responses of the two species' populations were interpreted using principal component analysis(PCA) based on leaf trait measurements. As a result, under climate change conditions, the ecological niche breadth for moisture environment was broader for Quercus variabilis than Quercus acutissima, whereas for the nutrient environment, Quercus acutissima exhibited a broader niche breadth than Quercus variabilis. And the rate of change in ecological niche breadth due to climate change decreased for Quercus variabilis in both moisture and nutrient environments, while for Quercus acutissima, it increased in the moisture environment but decreased in the nutrient environment. Additionally, in terms of group responses, both Quercus variabilis and Quercus acutissima expanded their ecological niches under climate change conditions in both soil moisture and nutrient conditions, with Quercus acutissima exhibiting a broader niche than Quercus variabilis under nutrient conditions. These results indicate that the changes in leaf morphological characteristics and the responses of individuals reflecting them vary not only under climate change conditions but also depending on environmental factors.