• Title/Summary/Keyword: moisture environment

Search Result 1,031, Processing Time 0.033 seconds

Study of Nanoparticle Effect on Durability of Carbon fiber/Epoxy Resin Composites in Moisture Environment (수분환경에서 탄소섬유강화 에폭시수지의 내구성에 대한 나노입자의 영향)

  • Ahn, Seok-Hwan;Choi, Young-Min;Moon, Chang-Kwon
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.43-49
    • /
    • 2014
  • This study has been investigated on the durability of carbon fiber/epoxy composites (CFRP) in moisture environment. The carbon fiber/epoxy composites were modified to use the nanoparticles such as carbon nanotubes and titanium oxide. These hybrid composites were exposed to moisture environment for a certain period of time. Weight gain according to immersion time, quasi-static tensile test and micro-graphic characterization were investigated on the samples exposed to moisture environment. Consequently, the weight gains increased with increasing immersion time and weight gain of the hybrid composites was lower than the one of CFRP through the whole immersion time. The tensile strengths decreased with increasing immersion time and tensile strengths of the hybrid composites were higher than the one of CFRP through the whole immersion time. The CFRP were observed more degraded than hybrid compositess in moisture environment. Therefore, it was concluded that the addition of nanoparticles in CFRP could lead to improve the durability in moisture environment.

Study on moisture transport in concrete in atmospheric environment

  • Zhang, Weiping;Tong, Fei;Gu, Xianglin;Xi, Yunping
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.775-793
    • /
    • 2015
  • Moisture transport in concrete in atmospheric environment was studied in this paper. Based on the simplified formula of the thickness of the adsorbed layer, the pore-size distribution function of cement paste was calculated utilizing the water adsorption isotherms. Taking into consideration of the hysteresis effect in cement paste, the moisture diffusivity of cement paste was obtained by the integration of the pore-size distribution. Concrete is regarded as a two-phase composite with cement paste and aggregate, neglecting the moisture diffusivity of aggregate, then moisture diffusivity of concrete was evaluated using the composite theory. Finally, numerical simulation of humidity response during both wetting and drying process was carried out by the finite difference method of partial differential equation for moisture transport, and the numerical results well capture the trend of the measured data.

Strength Evaluation on CFRP Hat-shaped Sectional Members According to Changes in Temperature Under Hygrothermal Environment (온도 변화에 따른 열습 환경하에서의 CFRP 모자형 단면부재의 강도평가)

  • Yang, Yongjun;Kook, Hyun;Yang, Inyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.892-896
    • /
    • 2012
  • CFRP composites with light weight, high strength, and high elasticity by comparing with metal are widely used rather than previous steel plates. However, CFRP composite material has the weakness at hydrothermal and collapsed impact environment. Especially, moisture absorption into composite material can change molecule arrangement and chemical properties under hydrothermal environment. And static collapse experiment is the research in the differences of absorbed energy and deformation mode between moisture and non-moisture absorbed specimens. This study is compared and analyzed on the progress change of moisture absorption ratio after setting up the temperatures of 60 and 80 degrees C in order to comprehend how the change in the temperature influences on moisture absorption status inside CFRP composite materials.

Computational Analysis of the Heat/Moisture Characteristics and Heat Load of Underground Structures (열.수분 동시이동 모델을 이용한 지하구조물 및 주변지반의 열수분성상 예측에 관한 연구)

  • Park, Kyung-Soon;Son, Won-Tug
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.901-905
    • /
    • 2008
  • This study was conducted to clarify the heat load characteristics and heat and moisture behavior of underground structures. The authors achieved this by carrying out a numerical analysis using simple heat diffusion and simultaneous heat and moisture transfer equations based on measurement data. This paper presents the results of a numerical analysis on the heat load characteristics and heat and moisture behavior of an underground basement and its surrounding ground under a condition of internal heat generation. The authors found it difficult to predict the heat behavior and heat load of the underground basement by simple heat diffusion alone. Accurate prediction of the thermal environment and heat load requires careful consideration of the influences of moisture and precipitation

  • PDF

Nonlinear calculation of moisture transport in underground concrete

  • Ba, M.F.;Qian, C.X.;Gao, G.B.
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.361-375
    • /
    • 2014
  • The moisture transport in underground concrete was experimentally investigated and the nonlinear model of moisture transport considering the effects of water diffusion, hydration of cementicious materials and water permeability was proposed. The consumed moisture content by self-desiccation could be firstly calculated according to evolved hydration degree of cement and mineral admixtures. Furthermore, the finite differential method was adopted to solve the moisture transport model by linearizing the nonlinear moisture diffusion coefficient. The comparison between experimental and calculated results showed a good agreement, which indicated that the proposed moisture model could be used to predict moisture content evolution in underground concrete members with drying-wetting boundaries.

A Study on Degradation in the Moisture Environment and Recovery of Carbon Fiber Reinforced Composites (탄소섬유 강화 복합재료의 수분에 의한 열화 및 회복에 관한 연구)

  • 서상하;이덕보;문창권
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.8-14
    • /
    • 2004
  • The effect of moisture absorption on the mechanical properties in carbon fiber reinforced composites has been investigated with various moisture environment such as sea water, tap water and distilled water. It also has been studied about the influence of drying of the immersed specimen for a certain period of time on the mechanical properties. As a result, we found that the ratio of moisture absorption mainly depended on the immersion time in the moisture environment and that of the immersed specimen for a certain period of time decreased with the drying time. We also found that tensile strength decreased with the increasing of the ratio of moisture absorption and the tensile strength decreased by moisture absorption recovered up to some extent by drying the specimen.

Predicting Plant Biological Environment Using Intelligent IoT (지능형 사물인터넷을 이용한 식물 생장 환경 예측)

  • Ko, Sujeong
    • Journal of Digital Contents Society
    • /
    • v.19 no.7
    • /
    • pp.1423-1431
    • /
    • 2018
  • IoT(Internet of Things) is applied to technologies such as agriculture and dairy farming, making it possible to cultivate crops easily and easily in cities.In particular, IoT technology that intelligently judge and control the growth environment of cultivated crops in the agricultural field is being developed. In this paper, we propose a method of predicting the growth environment of plants by learning the moisture supply cycle of plants using the intelligent object internet. The proposed system finds the moisture level of the soil moisture by mapping learning and finds the rules that require moisture supply based on the measured moisture level. Based on these rules, we predicted the moisture supply cycle and output it using media, so that it is convenient for users to use. In addition, in order to reduce the error of the value measured by the sensor, the information of each plant is exchanged with each other, so that the accuracy of the prediction is improved while compensating the value when there is an error. In order to evaluate the performance of the growth environment prediction system, the experiment was conducted in summer and winter and it was verified that the accuracy was high.

Strength Evaluation of CFRP Hat-shaped Sectional Members Due to Variation of Collapse Conditions Under Hygrothermal Environment (고온.고습 환경하에서의 압궤조건 변화에 따른 CFRP 모자형 단면부재의 강도평가)

  • Yang, Yong-Jun;Yang, In-Young;Sim, Jae-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.7-14
    • /
    • 2012
  • CFRP composite material has the superior specific strength and rigidity compared to metallic materials, and is widely adopted in the various fields. However, CFRP composite material has the weakness in hygrothermal and crash environment. Especially, moisture ingress into composite material under hygrothermal environment can change molecule arrangement and chemical properties. In addition, interface characteristics and material component properties can be degraded. A collapse experiment has been made to research the differences of absorbed energy and deformation mode between absorbed specimens of moisture and non-moisture. As a result of this study, the effect of moisture absorption and impact loads of about 30~50% reduction in strength are shown.

Comparison of Hygrothermal Performance between Wood and Concrete Wall Structures using Simulation Program

  • Yu, Seulgi;Chang, Seong Jin;Kang, Yujin;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.283-293
    • /
    • 2016
  • Owing to an increase in the air tightness of recent buildings, the natural ventilation rate was significantly lowered and the removal of accumulated moisture became difficult in these buildings. The hygrothermal performance of these buildings should be carefully considered to provide comfortable indoor environment by removing the moisture condensation risk and the mold growth potential. In this study, hygrothermal performance of two selected wall structures was investigated based on WUFI simulation program. The results displayed that the indoor temperature had impact on the moisture accumulation in the insulation layer for both modeled walls, showing that lower indoor temperature resulted in higher moisture accumulation, especially in the wood frame structure. Also, the yearly moisture accumulation profile exhibited a downward shift throughout the year by adding a vapour retarder with a lower sd-value. In addition, both of the two walls have condensation risk in winter, due to low temperature level. The wood frame structure has a bigger fluctuation and higher condensation risk than the concrete structure.

Effect of Water Environment on the Mechanical Properties of Unidirectional CFRP (일방향 탄소섬유강화 복합재료의 기계적 성질에 미치는 수 환경의 영향)

  • 손선영;김재동;고성위
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.23-30
    • /
    • 1997
  • The purpose of this paper is to investigate the water environmental effect on the mechanical properties of carbon fiber/epoxy composites. Moisture concentration absorbed in CFRP under various water environment was calculated and degradation of mechanical properties for each wet composite laminates is investigated by performing the flexual and tensile test. The results show that moisture absorption is accelerated in higher temperature environment and under the same temperature sea water environment prompts more absorption than fresh water. As increasing the water temperature and moisture concentration tensile and flexual strength decreased as much as 25%-40% compared with dry condition.

  • PDF