• Title/Summary/Keyword: moisture desorption

Search Result 75, Processing Time 0.036 seconds

Moisture Absorption and Desorption Properties of Douglas Fir, Hinoki, Larch, Plywood, and WML Board in Response to Humidity Variation

  • PARK, Hee-Jun;JO, Seok-Un
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.488-502
    • /
    • 2020
  • In this study, the moisture absorption and desorption properties presented by the Health-Friendly Housing Construction Standards of South Korea were compared using the wood of three tree species (Douglas-fir, Hinoki, Larch) and two types of wood-based materials(Plywood, WML Board). The national standards for functional building materials present that the amounts of moisture absorption and desorption should be at least 65g/㎡ on average, respectively according to the test method under KS F 2611:2009. Therefore, in this study, the moisture absorption/desorption properties of materials with no treatment (Control), with punching, and with surface stain finishing and the moisture absorption/desorption property improvement effects of the treatments were compared and analyzed. According to the results of this study, it was evaluated that all five types of wood and wood-based materials tested did not satisfy the amount of moisture absorption/desorption of at least 65g/㎡, which is the performance standard for moisture absorption/desorption functional building materials, indicating that untreated wood and wood-based materials cannot be applied as functional finishing materials according to the Health-Friendly Housing Construction Standards. The surface stain finishing greatly reduced the moisture absorption and desorption rates of the materials, and the amounts of moisture absorbed and desorbed were also shown to decrease by at least two times on average. When the surfaces of the materials were punched with Ø4mm holes at intervals of 20 mm, the moisture absorption/desorption areas increased from 18% to 51%, and this increase was shown to be capable of increasing the amounts of moisture absorbed/desorbed by 29% on average at the minimum, and 81% on average at the maximum. The effects of punching were shown to be identical even in cases where the materials were stain finished. For the application of wood or wood-based materials as eco-friendly, health-friendly, and moisture absorption/desorption functional building materials hereafter, it is judged that new physical and chemical improvement studies should be conducted, and treatment methods should be developed.

Effect of Carbonization Temperature on Hygric Performance of Carbonized Fiberboards

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.615-623
    • /
    • 2014
  • Increases of public attention on healthy environment lead to the regulation of indoor air quality such as Clean Healthy House Construction Standard. This standard covers emission of total volatile organic compounds (TVOCs) (e.g., formaldehyde, benzene, and toluene), ventilation, and use of environmentally-friendly products or functional products. Moisture absorption and desorption abilities are a recommended functionality for improving indoor air quality. In this study, moisture absorption and desorption capacities of carbonized board from wood-based panels and other materials were determined by using UNT-HEAT-01 according to ISO 24358:2008. Pine had higher moisture absorption and desorption capacities ($49.0g/m^2$ and $35.3g/m^2$, respectively) than hinoki cypress, cement board, gypsum board, oriented strand board, and medium density fiberboard (MDF). The moisture absorption and desorption capacities differed considerably according to the wood species. After carbonization process at $400^{\circ}C$, the absorption and desorption ability of MDF increased to 38% and 60%, respectively. However, moisture absorption and desorption capacities decreased with increasing carbonization temperature, but they were still higher than original MDF. Therefore, it is suggested that carbonization below $600^{\circ}C$ can improve moisture absorption/desorption capacities.

Moisture Adsorption and Desorption Property of the Wallpaper using Natural Substance (천연 물질을 적용한 벽지의 흡·방습 성능에 관한 연구)

  • Hwang, Hye-jin;Kim, Dong-kwon;Jeong, Jae-sik;Bae, Jin-seok
    • Textile Coloration and Finishing
    • /
    • v.27 no.3
    • /
    • pp.210-218
    • /
    • 2015
  • In this study, natural substance and mineral materials was used for architectural interior wallpaper. Because natural substance and minerals are environment-friendly material with moisture adsorption and desorption properties. Natural substance and mineral materials was evaluated in moisture adsorption and desorption properties. Also, in the diatomite, the pores were observed on SEM photographs. Thus, it is supposed that moisture adsorption and desorption properties were influenced by the microstructure of the pore. The wallpaper according to the ratio of the mixture was analyzed for physical properties and moisture adsorption & desorption properties. As a result, we developed a wallpaper having excellent hygrothermal performance.

Moisture Sorption and Desorption Isotherms of Various Leaf Tobaccos (잎담배의 흡습 및 탈습에 관한 연구)

  • 진학용;최승찬;이태호;유광근
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.3 no.1
    • /
    • pp.30-40
    • /
    • 1981
  • The moisture sorption and desorption isotherms of various tobaccos were obtained over a relative humidity range from 0 to 90% at $20^{\circ}C$ and $30^{\circ}C$. The hysteresis effect, constant and rate of moisture sorption and desorption, monomolecular-layer moisture content, and specific surface area were analyzed from the obtained data. The moisture sorption and desorption isotherms showed a different characteristics for different tobacco varieties. At a lower humidity range below 50% RH, Burley tobacco had higher moisture sorption and desorption figures than Hicks and Basma, while, at a higher humidity range above 50% RH, Hicks had higher values than the others. The hysteresis effect of tobacco were greater in an intermediate humidity range (40-70% RN), and Basma showed a greater effect than the others. The sorption and desorption constant (K) increased with temperature, but decreased with RH, and Burley tobacco had larger K values, while Hicks had smaller K values than others. The sorption and desorption rate of Burley tobacco were greater than the other tobaccos. The monomolecular-layer moisture was 27.8 and 51.4mg/g, and the specific surface was 101 and $186m^2/g$, for Basma and Burley, respectively.

  • PDF

Hygroscopic Characteristic of Gypsum Boards Using Porous Materials (다공성 원료를 사용한 석고보드의 흡습 특성)

  • Jeong, Eui-Jong;Lee, Jong-Kyu;Cheong, Deock-Soo;Chu, Yong-Sik;Song, Hun
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.538-543
    • /
    • 2009
  • Active clays, Diatomite, bentonite and zeolite were used as porous materials for fabricating hygroscopic gypsum boards. Pohang active clay and Cheolwon diatomite showed excellent characteristics of moisture adsorption and desorption. These characteristics were caused by higher surface area and pore volume of porous materials. Moisture adsorption content of gypsum board with 10% active clay(P1) was 62.0 g/m$^2$, and moisture desorption content was 50.2 g/m$^2$. Moisture adsorption content of gypsum board with 10% diatomite(P) was 59.5 g/m$^2$, and moisture desorption content was 49.0 g/m$^2$. Moisture adsorption contents of gypsum boards with porous materials were higher than that moisture desorption contents of gypsum board without porous materials. Correlation coefficient between surface area and moisture adsorption content of gypsum boards was 0.98. Also, correlation coefficient between surface area and moisture desorption content of gypsum boards was 0.97. Moisture adsorption and desorption contents were influenced by surface area and pore volume of the gypsum boards, and surface area had a larger effect on moisture adsorption and desorption.

The aging characteristics of composite insulating materials due to high-temperature and high-moisture (고온 다습하에서 복합절연재료의 열화특성)

  • 이종호;이규철;김순태;박홍태
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.15-24
    • /
    • 1994
  • For increasing the insulating proper-ties and the reliability of composite materials due to environmental aging, the electrical and mechanical characteristics of moisture absortion specimens and moisture desorption specimens were investigated. After moisture absorption wt% and moisture desorption wt% increased with time, a state of saturation arrived subsequent to a constant time. Moisture absorption constants with the layers of glass fiber showed 0.0117 in 1 layer, 0.0123 in 2 layers and 0.0152 in 3 layers. Electrical and mechanical characteristics dropped significantly with moisture absorbing in composite materials. Although moisture dried completly at 70.deg. C, it is impossible to obtain the electrical and mechanical characteristics before moisture absorption. Many defaults by moisture in composite materials exist at interface between epoxy matrix and filler.

  • PDF

Comparison of Moisture Absorption/Desorption Properties of Carbonized Boards Made from Wood-Based Panels (목질판상재로 제조된 탄화보드의 흡방습 성능 비교)

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.424-429
    • /
    • 2016
  • In this study, the carbonized boards were manufactured from different types of wood-based panel and then their moisture absorption/desorption properties were investigated and compared. The carbonization temperature was maximum $600^{\circ}C$ with 2 h maintains. Test results showed higher absorption/desorption capacity on carbonized plywood than carbonized MDF, PB, and OSB, respectively. However, carbonized MDF, OSB, and plywood had similar absorption/desorption rate per hour. It means carbonized OSB and plywood can transfer moisture into deeper side and then possibly hold more amount of water. Based on SEM images, carbonized OSB and plywood showed more like wood structure, while carbonized MDF and PB had only wood fiber or/and chunk of wood fragments. Therefore, original wood structure may affect moisture absorption/desorption capacity. In order to manufacture high moisture absorbing/desorbing carbonized board, wood structure should be considered and then carbonized.

EMC/ERH of Rough Rice and Brown Rice (벼 및 현미의 평형함수율/평형상대습도)

  • Choi B. M.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.95-101
    • /
    • 2005
  • Adsorption and desorption experiments were carried out on rough rice and brown rice (Nampyung) at 5, 15, 25, 35, $45^{\circ}C$ for moisture contents between 8.7 and $25\%$ (db). The method employed was to measure the equilibrium relative humidity (ERH) of air in contact with the grain under static conditions, using an electronic hygrometer The effects of temperature and moisture contents were investigated, and the measured values were fitted to the modified Henderson, the modified Chung-Pfost, the modified Halsey and the modified Oswin model. The ERHs of rough rice and brown rice decreased with an decrease in moisture content and temperature, and the effects of temperature was no significant at moisture content of $25\%$ (db). Equilibrium moisture content (EMC) of brown rice was higher than rough rice at same temperature and relative humidity. Desorption EMC is higher than the adsorption, but there is no significant difference between desorption and adsorption EMC in moisture content near $25\%$ (db) at rough rice and near 9, 21 and $25\%$ (db) at brown rice. The modified Oswin model was the best in describing the adsorption EMC and the modified Chung-Pfost model was the best in describing the adsorption ERH of rough rice. The modified Oswin model was the best in describing the adsorption EMC/ERH of brown rice. The modified Chung-Pfost model was the best in describing the desorption EMC/ERH of rough rice and brown rice.

Performance Evaluation of Water Vapour Adsorption/Desorption Property for a Building Material by Mock up Test (실물시험을 통한 흡방습 건축자재의 성능평가)

  • Kim, Hea Jeong;Song, Kyoo Dong;Lee, Yun Gyu
    • KIEAE Journal
    • /
    • v.9 no.2
    • /
    • pp.53-58
    • /
    • 2009
  • There are increasing developments and uses of functional building materials are recently developed and introduced to the test method for the materials. Especially, moisture problem has a major role are also being established in indoor air quality problems. The purpose of this study is to evaluate the water vapour adsorption/desorption property of a ceiling material. The variation of the temperature and moisture were measured with the application materials by mock up test based on JIS 1470-1. The result shows that water vapour adsorption/desorption property of ceiling material is appeared in changes of moisture adsorption and desorption in comparison with that of a general ceiling material. Therefore, in case of decreasing and increasing in humidity, these materials can be used as an finishing material to sustain comfort condition.

Experimental Examinations on the Phenomenon of Transfer and Moisture Diffusion in Wood (목재내(木材內)의 수분확산(水分擴散) 및 전달현상(傳達現象)에 관한 실험적 검정(檢定))

  • Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.75-80
    • /
    • 1996
  • The purpose of this study is to clarify the mechanism of moisture transfer depend on the thickness of the spruce(Picea sitchensis Carr.). Therefore, as the basic research of moisture transmission, the amount of moisture transmission and the moisture distribution in specimens and temperature of it's surfaces in vapor transmission process were investigated. The experiment was conducted in a steady state. and the moisture distribution was measured by knife cutting and weighing the specimens. The following conclusions were obtained ; 1. It can be found that distribution of moisture in the specimen can be approximated by two different straight lines intersecting at nine or ten percent moisture content. The amount of moisture movement defends on the gradient of moisture in the wood. 2. It is investigated that the wood surface moisture contents(MCs) are less for thinner specimens than for thick ones on the absorption side. On the other hand, the wood surface MCs are greater for thinner specimens than for thick ones on the desorption side. The main factor that affects the EMC of wood would be temperature when the relative humidity of atmosphere is constant. The specimen generate heat with the absorption and desorption process. In addition, the velocities of moisture transmission varied with the thicknesses of specimens. If the temperature of wood becomes greater, its MC decreases. Then the difference between surface MC and EMC of adsorption and desorption side becomes greater for thinner specimens. Therefore it is considered that the coefficients of moisture transfer decreases with the increases of the specimens' thicknesses.

  • PDF