• Title/Summary/Keyword: moisture damage

Search Result 294, Processing Time 0.03 seconds

Quality and Antioxidant Characteristics of Roasted Maize Tea with Different Moisture Contents (수분함량을 달리하여 제조한 볶음 옥수수차의 품질 및 항산화 특성)

  • Lee, Ji Hae;Kim, Hyun-Joo;Kim, Mi Jung;Jung, Gun-Ho;Lee, Byong Won;Lee, Byoung Kyu;Woo, Koan Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1149-1156
    • /
    • 2017
  • We investigated the quality characteristics and the antioxidant efficacy of roasted maize tea according to different moisture contents (9% to 14%) using the puffing system (PS) and the roasting system (RS). Compared with the RS, the PS caused higher turbidity (0.017 vs. 0.003 in PS-14% vs. RS-14%), brown color intensity (0.170 vs. 0.059 in PS-14% vs. RS-14%), a-values (0.20 vs. -0.44 in PS-14% vs. RS-14%), b-values (7.90 vs. 5.57 in PS-14% vs. RS-14%), and a lower L-value (19.67 vs. 21.03 in PS-14% vs. RS-14%). Total polyphenol and flavonoid contents of roasted maize tea were increased along with the moisture content and they were higher with the PS (polyphenol; 5.95 mg GAE/g, flavonoids; 1.27 CE/g in PS-14%) than with the RS (polyphenol; 5.39 mg GAE/g, flavonoids; 1.12 mg CE/g in RS-14%). The DPPH and ABTS radical scavenging effects of roasted maize tea were also increased along with the moisture content, and the scavenging efficacy was significantly higher with the PS (DPPH; 160 mg TE/100g, ABTS; 507 mg TE/100g in PS-14%) compared with the RS (DPPH; 120 mg TE/100g, ABTS; 362 mg TE/100g in RS-14%). The polyphenol levels were significantly correlated with turbidity, brown color intensity, and L, a, and b-values of the roasted maize tea. In addition, an increase of the total polyphenol content in roasted maize tea induced antioxidant activities. As a result, an increase in polyphenols during the roasting process induced antioxidant activities which could prevent damage from free radicals.

A Study on Mechanical Characteristics of Fiber Modified Emulsified Asphalt Mixture as Environmentally-Friend Paving Material (섬유보강 친환경 상온아스팔트 혼합물의 역학적 특성에 관한 연구)

  • Rhee Suk-Keun;Park Kyung-Won
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.23-30
    • /
    • 2006
  • Emulsified Asphalt Mixture(EAM) is more environmentally-friendly and cost-effective than typical Hot Mix Asphalt (HMA) because EAM does not produce carcinogenic substances, e.g., naphtha, kerosene, during the both of manufacturing and roadway construction process. Also, it does not require heating the aggregates and asphalt binder. However, EAM has some disadvantages. Generally EAM has a less load bearing capacity and more moisture susceptibility than conventional HMA. The study evaluated a Fiber modified EAM (FEAM) to increase load bearing capacity and to decrease moisture susceptibility of EAM. Modified Marshall mix design was developed to find Optimum Emulsion Contents (OEC), Optimum Water Contents (OWC), and Optimum Fiber Contents (OFC). A series of test were performed on the fabricated specimen with OBC, OWC, and OFC. Tests include Marshall Stability, Indirect Tensile Strength, and Resilient modulus test. Comparison analyses were performed among EAM, Fiber modified EAM (FEAM), and typical HMA to verify the applicability of EAM and FEAM in the field. Test results indicated that both of EAM and FEAM have an enough capability to resist medium traffic volume based on the Marshall mix design criteria. Also the study found that fiber modification is effective to increase the load bearing capacity and moisture damage resistance of EAM.

  • PDF

A Study on the Development and Performance Test of the Non-gravity Fluidized Dryer (무중력 유동층 건조기 개발과 성능평가)

  • Han, J.W.;Kum, S.M.;Lee, C.E.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.665-670
    • /
    • 2001
  • The purpose of this study is to develop a new type dryer, which is to proceed mixing and drying of wet-materials at the same time and drying process is carried out in a closed system. In this drying system, thermal contact occurs, when a fluidized zone is created by paddle mechanism. Accordingly, wet-materials is dried in a short time without any damage. Also wet-materials could be dried uniformly to low moisture contents. It is suitable to dry a small quantity of multi-kind materials. And drying process is carried out in a closed system, so as for environmental pollution dust not to be emitted into the atmosphere. Accordingly, it could be used to dry not only food and chemical materials, but also environmental pollution materials.

  • PDF

Study on the injecting technology of waterproofing layer for water leakage repair of roof (건축물 옥상방수층의 누수보수를 위한 방수층재형성 주입기술에 관한 연구)

  • 배기선;조일규;장혁수;곽규성
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.23-27
    • /
    • 2002
  • Waterproofing is one of the important factor to improve performance of building elements. But existing repair system for waterproofing have many problems like a damage of waterproof layer due to movement of concrete substrate, blistering effect and moisture condition. So waterproofing layer can not play an important part to improve waterproofing function and performance of building. Therefore, new waterproofing system to solve these problems of existing waterproofing system is developed. In this paper, new waterproofing system in water-leakage repair for remodeling is introduced

  • PDF

Exposure Assessment of Biological Agents in Indoor Environments (실내환경에서 생물학적 인자에 대한 노출평가)

  • Park, Ju-Hyeong
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.4
    • /
    • pp.239-248
    • /
    • 2009
  • The Institute of Medicine of the National Academies of Science in the United States concluded in its 2004 report that excessive indoor dampness is a public health hazard and that its prevention should be a public health goal. Water damage in buildings, such as leaks from roofs, walls, or windows, may increase indoor moisture levels. Excessive dampness may promote microbial proliferation in indoor environments, increase occupants' exposure to microbial agents, and eventually produce adverse health effects in building occupants. Epidemiological studies to demonstrate the causal association between exposure to indoor microbial agents and health effects require reliable exposure assessment tools. In this review, I discuss various sampling and analytical methods to assess human exposure to biological agents in indoor environments, their strengths and weaknesses, and recent trends in research and practice in the USA.

The Effect of Sodium Acetate in Alkaline Treatment of Acetate Fabrics (아세테이트 직물의 NaOH 처리시 무기염 첨가에 따른 영향)

  • Sung, Jong-Mi;Kim, Hye-Rim;Song, Wha-Soon
    • Fashion & Textile Research Journal
    • /
    • v.7 no.1
    • /
    • pp.85-90
    • /
    • 2005
  • The effect of sodium acetate to reduce the fiber damage and hardening of acetate fabrics during alkaline treatment is studied. The optimal condition is controlled concentration 2%, at $50^{\circ}C$ for 6 minutes and at $70^{\circ}C$ for 2 minutes through the result of weight loss, shrinkage and tensile strength. Alkaline treated acetate fabrics under optimal condition show softer than untreated acetate fabrics. Alkaline treatment with sodium acetate brings the reduction in hardening and shrinkage in internal fiber of acetate fabric. Also, alkaline treatment with sodium acetate improves the tensile strength of acetate fabrics compared with only alkaline treatment. The moisture regain of acetate fabrics is also improved by alkaline treatment under optimal condition.

The Comparison of Collapsible Characteristics on Decomposed Granite Soil and Loess (풍화 화연토와 loess의 붕괴특성 비교)

  • 도덕현
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 1986
  • The structure of the collapsible soils, such as decomposed granite soil and loess, were examined by the odeometer test, SEM & XES analysis and static & cyclic triaxial test, and hove this structure have influences upon the collapsible behaviour under static and cyclic load was investigated. The study results obtained are as follows; 1. The macropores space of decomposed granite soil (rd=1.50g/cm3) and loess (rd=1.43g/cm3) used in this test were well developed, and showed the behaviour of collapsible soil. 2. Collapsible soil has high resistance on the strain under natural moisture content, however, the resistance on the strain was sharply decreased by the absorption and increasing load since its special structure was destructed. 3. Under the static load, the strain of collapsible soil was high by the viscous flow of the cyclic bonds with time lapse, but Infer the cyclic load, the strain of collapsible soil was low since the tinge needed to destruct the bonding force of clay was not enough. 4. The understanding about the cyclic behaviour of collapsible soil may be helpful to predict the elastic & residual strain of the foundations by the earthquake together with the damage by the additional failure.

  • PDF

Development of a Sealer for the Durable-Performance Improvement of the Nuclear Concrete (원전콘크리트 내구성능개선을 위한 표면침투제 개발)

  • Park, Sang-Soon;Lee, Sang-Keun;Lee, Sang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.821-824
    • /
    • 2004
  • For nuclear concrete structures on the coast, the prevention and management against salt damage is needed because they are being under the influence of the sea water at all times. In general, the deterioration of the concrete is generated in concrete surface firstly and then extended into concrete gradually as its service life increases. Therefore, the protective layer on the concrete surface is needed to establish and manage the durability of concrete. To enhance the durability performance of the existing and new concrete, the development and application of a high-performance penetration sealer is needed. The sealer has to have the functions that are able to prevent the attack of the moisture, carbon dioxide, and harmful substance from the outside. Therefore, the aim of this study is to development of a sealer for the long service-life and waterproof performance of a nuclear concrete structures.

  • PDF

Emission of NO2 Gas Causing Damage to Plants in an Acid Soil under Conditions Favorable for Denitrification

  • Suh, Sun-Young;Byeon, Il-Su;Lee, Yong-Se;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.288-295
    • /
    • 2013
  • Nitrogen dioxide ($NO_2$) gas damage on vegetable crops commonly occurs in plastic film houses where relatively large amounts of $NO_3{^-}$ are applied in acid soils. In acid soils, $HNO_2$ can be formed from the $NO_2{^-}$ accumulated during denitrification, and $NO_2$ can be evolved from the chemical self-decomposition of $HNO_2$. In this study, $NO_2$ gas production and its detrimental effects on plants were investigated in soils of various conditions to elucidate the mechanisms involved in the gas production. A silty loam soil was amended with $NO_3{^-}$ (500 mg N $kg^{-1}$) and glucose, and pH and moisture of the soil were adjusted respectively to 5.0 and 34.6% water holding capacity (WHC) with 0.01 M phosphate buffer. The soil was placed in a 0.5-L glass jar with strawberry leaf or $NO_2$ gas absorption badge in air space of the jar, and the jar was incubated at $30^{\circ}C$. After 4-5 days of incubation, dark burning was observed along the outside edge of strawberry leaf and $NO_2$ production was confirmed in the air space of jar. However, when the soil was sterilized, $NO_2$ emission was minimal and any visible damage was not found in strawberry leaf. In the soil where water or $NO_3{^-}$ content was reduced to 17.3% WHC or 250 mg N $kg^{-1}$, $NO_2$ production was greatly reduced and toxicity symptom was not found in strawberry leaf. Also in the soil where glucose was not amended, $NO_2$ production was significantly reduced. In soil with pH of 6.5, $NO_2$ was evolved to the level causing damage to strawberry leaf when the soil conditions were favorable for denitrification. However, compared to the soil of pH 5.0, the $NO_2$ production and its damage to plants were much less serious in pH 6.5. Therefore, the production of $NO_2$ damaging plants might be occurred in acid soils when the conditions are favorable for denitrification.

Statistical Analysis of Termite Damage and Environmental Characteristics of the Josadang Shrine in Seonamsa Temple (선암사 조사당의 흰개미 피해 및 환경 특성 통계 분석)

  • Lim, Bo A;Kim, Myoung Nam;Kim, Young Hee;Lee, Jeung Min;Jo, Chang Wook;Jeong, So Young
    • Journal of Conservation Science
    • /
    • v.35 no.3
    • /
    • pp.197-208
    • /
    • 2019
  • Biological damages of wooden cultural properties are closely related to the preservation of the environment; these damages can be accelerated because of rapid climate change. Therefore, to preserve cultural properties, it is important to understand environmental characteristics. This study aims to investigate the status of termite damage and the characteristics of major environmental factors such as micro-meteorology, meso-meteorology, and local-meteorology of the Josadang shrine in the Seonamsa temple at Suncheon. Damage was confirmed by visual observation and the response of the termite detection dog at the north-west corner. Also another damage was observed by the termite detection dog at the north-east corner. These pillars had lower surface temperature and higher moisture content compared with the pillars in the front. The mean temperature of the entire time was similar for the meteorologies; however, the relative humidity differed. High relative humidity, greater than 70%, was observed frequently. In particular, it was determined that the termite activity days were the most inside the Josadang shrine. The statistical analysis confirmed that there was a difference between the meteorology events through the F ratio. In addition, the difference of environmental factors with relative humidity and temperature was identified more great difference in relative humidity through the t-statistics of temperature and relative humidity. And then relative humidity was confirmed most great in the difference of meso-meteorology and local-meteorology.